数字多空策略(实盘+回测+数据)

2024-03-16 10:44

本文主要是介绍数字多空策略(实盘+回测+数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

数量技术宅团队在CSDN学院推出了量化投资系列课程

欢迎有兴趣系统学习量化投资的同学,点击下方链接报名:

量化投资速成营(入门课程)

Python股票量化投资

Python期货量化投资

Python数字货币量化投资

C++语言CTP期货交易系统开发

数字货币JavaScript语言量化交易系统开发


技术宅此前分享的数字策略多为单边策略。单边策略最大的特征是在承担一定的波动风险前提下获取高收益率。而对于许多稳健的、中、低风险偏好的投资者来说,在承担尽可能小的波动风险前提下,获取尽可能高的收益率,是他们追求的目标。

本期,我们将推出一期同时兼顾低风险和高收益的优质策略:数字货币多空策略。策略不受整个数字货币市场涨跌的影响、回撤小同时长期运行也有极高的收益率,让我们一起来看看吧!

策略逻辑

首先,我们简要介绍“数字货币多空策略”的策略逻辑:

随着交易所挂牌交易的合约数量不断增加,同时合约相互间相关性不断降低,有更多的币种不与BTC、ETH等主流币同涨同跌,呈现涨跌分化的状态,因此每天都有不同币种的做多、做空机会。下图是我们随机选取某天币安所有U本位合约的涨跌幅排序,可以看出币种涨跌分化很明显,涨幅排名第一的ICPUSDT和跌幅排名第一的BSVUSDT的24h涨跌幅差距超过40%,而涨幅排名前5名币种的24h涨跌幅差距也超过20%,多空分化产生的交易机会很多、价差收益也很可观。

那么,问题的关键就在如何有效筛选出多空分化的币种,从而实现合约的价差收益。我们通过全量历史数据+海量因子筛选测试,最终确定了三个最有效的信号因子,以及之对应的三个多空策略,每个多空策略的多空币种市值相当,实现了方向上的完全对冲,不受整个数字货币市场涨跌的影响,能够在低风险的前提下,有效赚取币种间的相对强弱收益

三个策略的目标执行周期不同,因此在捕捉行情的时间维度上也有一定的分散度。三策略既可以单策略独立运行,也可以三策略组合运行。组合运行的策略收益更稳定、回撤更小

回测绩效

三策略通用测试参数:测试周期从2020-1-1测试到2023年末共计4年时间;交易成本按照单次多空交易千分之二扣除(足够覆盖交易手续费与盘口价差成本);测试杠杆采用2倍杠杆;单利测试。

我们先分别看三策略单策略绩效:

策略一:累积收益率超过17.5倍,年化收益率超过437.5%,单次多空交易利润3.7%,最大回撤率<20%。

策略二:累积收益率同样超过17.5倍,年化收益率超过437.5%,单次多空交易利润2.6%,最大回撤率<25%

策略三:累积收益率超过16倍,年化收益率超过400%,单次多空交易利润1.4%,最大回撤率<15%

再来看组合绩效,组合绩效是同时运行三个多空策略所产生的效果,组合策略累积收益率同样超过17.5倍,年化收益率超过437.5%,单次多空交易利润2.5%,最大回撤率<15%。可以看出,组合策略在实现不低于单策略收益率的同时,最大回撤率更低,运行也更稳健,真正创造了低风险、高收益的特征

通过历史测试可以看到,多空策略在低风险的环境下,在2倍杠杆的条件下,实现了年均超4倍的利润,其盈利能力完全不低于目前市场中的大多数单边策略

实盘业绩

我们根据回测确定的最佳三策略组合,并编写了实盘交易系统。并在测试账户进行为期两个半月多的实盘交易(同样采用2倍杠杆),累积产生了超过150%的收益率!(ps:尽管BTC处于大牛市,策略仍大幅跑赢BTC涨幅),实盘业绩曲线如下。

附上部分随机截取实盘交易记录

至此,数字多空策略通过实盘业绩验证。

这篇关于数字多空策略(实盘+回测+数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815230

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I