基于C51实现按键控制

2024-03-16 03:40
文章标签 实现 控制 按键 c51

本文主要是介绍基于C51实现按键控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🐋 前言:本实验基于STC89C52RC单片机,根据电路原理图编程通过独立按键控制led灯、通过矩阵按键控制开发板数码管模块。由于51系列单片机结构大同小异,读者可根据此博客举一反三,实现所需完成的功能。


🐬 目录:

  • 一、按键介绍与按键消抖
  • 二、按键原理图分析
  • 三、独立按键控制led灯
  • 四、矩阵按键控制开发板数码管模块

🐇 实验所选单片机及结构展示(以普中C51为例,其他大同小异),本实验所操作的独立按键位于图中序号⑩位置,矩阵按键位于图中序号⑥位置

在这里插入图片描述

一、按键介绍与按键消抖

🐪 按键是一种电子开关,使用时轻轻按开关按钮就可使开关接通,当松开手时,开关断开。实物图如下所示:

在这里插入图片描述

通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,电压信号如下图所示:
在这里插入图片描述
由于机械点的弹性作用,按键开关在闭合时不会马上稳定的接通,在断开时也不会一下子断开,因而在闭合和断开的瞬间均伴随着一连串的抖动。按键抖动会引起按键被误读多次。为了确保CPU对按键的一次闭合仅做一次处理,必须进行消抖
🐪 按键消抖有两种方式,一种是 硬件消抖,另一种是软件消抖;硬件消抖是通过增加额外的电路来实现,一般有两种方式:RS触发器与电容滤波。实际上,在没有MCU的情况下,对按键进行消抖通常是通过硬件消抖电路来实现。而在嵌入式开发中,大多数情况下都是通过程序来实现按键消抖。一般来说一个简单的按键消抖就是先读取按键的状态。如果得到按键按下以后,延时10ms,再次读取按键的状态,如果得到按键按下之后,延时10ms,再次读取按键的状态,如果按键还是按下状态,说明按键已经按下,其中延时10ms就是软件消抖处理。


二、原理与电路图分析

2.1 独立按键

🐏 本实验对于独立按键操作的具体效果为:按下K1键,LED模块中D1指示灯点亮,再按一下,指示灯熄灭。对于按键操作的重点在于如何识别按键是否按下。实验所用开发板按键模块以及单片机引脚电路如下图所示:
在这里插入图片描述
🐏 从独立按键的电路图可以看出,4个独立按键的控制管脚连接到51单片机的P3.0-P3.3脚上。其中K1连接在P3.1上,K2连接到P3.0上,K3连接在P3.2上,K4连接在P3.3上。4个按键另一端连接在GND。下面以单片机P3.1引脚为例,结合上图P3.X端口内部电路图分析当按键K1按下,从P3,1读取到的电平如何变化。
在这里插入图片描述
当K1按键按下时,右侧为通路,而读电路被短路,读到为低电平,当K1按键没有按下,右侧电路被断路,读引脚电路读到引脚为高电平。即当K1按下时,读到P3.1引脚为低电平,否则为高电平

2.2 矩阵按键

🐏 独无论是独立按键还是矩阵按键,单片机检测其是否按下的依据都是一样:检测与该键对应的I/O口是否为低电平,此外矩阵按键的重点为检测是矩阵中哪个按键按下,检测方法有多种,最常用的是行列扫描线翻转法。本实验以44矩阵按键为实验对象,电路图如下所示。从下图中可以看出。44矩阵按键引出的8根控制线直接连接到51单片机的P1口上。电路中的P17连接矩阵键盘中的1行,P13连接矩阵键盘第1列

在这里插入图片描述

🐏 行列扫描:行列扫描法检测时,先送一列为低电平,其余几列全为高电平(此时我们确定了列数),然后立即轮流检测一次各行是否有低电平,若检测到某一行为低电平(这时我们又确定了行数),则我们便可确认当前被按下的键是哪一行哪一列的,用同样方法轮流送各列一次低电平,再轮流检测一次各行是否变为电平,这样即可检测完所有的按键,当有键被按下时便可判断出按下的键是哪一个键。

🐏 线翻转法:将所有行线输出低电平,检测列线对应引脚是否为低电平,读取引脚电平为低电平,原理同上独立按键,表示为该列有按键按下,记录下列线值;然后翻转,使所有列线都为低电平,检测所有行线的值,记录变化的行线的值。最后根据记录的行线和列线确定是矩阵中按下按键的位置。

三、实现独立按键控制led灯

🌿 根据基于C51实现流水灯以及电路分析,实现代码如下,其中key_scan()函数检测按下的独立按键为哪一个,如果为K1,则将led模块D1状态翻转。

/**************************************************************************************
实验名称:独立按键实验
实验现象:下载程序后,按下“独立按键”模块中K1键,控制D1指示灯亮灭																			  
***************************************************************************************/
#include "reg52.h"typedef unsigned int u16;	//对系统默认数据类型进行重定义
typedef unsigned char u8;//定义独立按键控制脚
sbit KEY1=P3^1;
sbit KEY2=P3^0;
sbit KEY3=P3^2;
sbit KEY4=P3^3;//定义LED1控制脚
sbit LED1=P2^0;//使用宏定义独立按键按下的键值
#define KEY1_PRESS	1
#define KEY2_PRESS	2
#define KEY3_PRESS	3
#define KEY4_PRESS	4
#define KEY_UNPRESS	0	/*******************************************************************************
* 函 数 名       : delay_10us
* 函数功能		 : 延时函数,ten_us=1时,大约延时10us
* 输    入       : ten_us
* 输    出    	 : 无
*******************************************************************************/
void delay_10us(u16 ten_us)
{while(ten_us--);	
}/*******************************************************************************
* 函 数 名       : key_scan
* 函数功能		 : 检测独立按键是否按下,按下则返回对应键值
* 输    入       : mode=0:单次扫描按键mode=1:连续扫描按键
* 输    出    	 : KEY1_PRESS:K1按下KEY2_PRESS:K2按下KEY3_PRESS:K3按下KEY4_PRESS:K4按下KEY_UNPRESS:未有按键按下
*******************************************************************************/
u8 key_scan(u8 mode)
{static u8 key=1;if(mode)key=1;//连续扫描按键if(key==1&&(KEY1==0||KEY2==0||KEY3==0||KEY4==0))//任意按键按下{delay_10us(1000);//消抖key=0;if(KEY1==0)return KEY1_PRESS;else if(KEY2==0)return KEY2_PRESS;else if(KEY3==0)return KEY3_PRESS;else if(KEY4==0)return KEY4_PRESS;	}else if(KEY1==1&&KEY2==1&&KEY3==1&&KEY4==1)	//无按键按下{key=1;			}return KEY_UNPRESS;		
}
/*******************************************************************************
* 函 数 名       : main
* 函数功能		 : 主函数
*******************************************************************************/
void main()
{	u8 key=0;while(1){key=key_scan(0);if(key==KEY1_PRESS)//检测按键K1是否按下LED1=!LED1;//LED1状态翻转	}		
}
代码分析

static u8 key=1; //被static修饰后的局部变量被放在静态存储区,能进行默认初始化,而且只能初始化一次,下次访问的时候能保留上一次的值

key_scan函数带一个形参mode,该参数用来设定是否连续扫描按键。main函数中定义了一个while循环,程序不断执行循环内代码,当key_scan函数传入实参0,经过第一次key_scan函数运行后,LED1翻转一次 ,static修饰的局部变量key变为0,只有当按键松开时key才会重新变为1,即按下按键后只会检测一次,这样做的好处是可以防止按一次出现多次触发的情况,delay_10us()用于按键消抖;当key_scan函数传入实参1,key_scan中局部变量key一直为1,while循环一次即检测一次,这样做的好处是可以很方便实现连按操作。


四、矩阵按键控制数码管

🌿 本实验所要实现的功能时:通过开发板上的矩阵键盘控制静态数码管显示对应的键值0-F,结合基于C51实现数码管的显示与上述电路原理图的分析,实现代码如下所示:

/**************************************************************************************
实验名称:矩阵按键实验	
实验现象:下载程序后,按下“矩阵按键”模块中S1-S16键,对应数码管最左边显示0-F																  
***************************************************************************************/
#include "reg52.h"typedef unsigned int u16;	//对系统默认数据类型进行重定义
typedef unsigned char u8;#define KEY_MATRIX_PORT	P1	//使用宏定义矩阵按键控制口		#define SMG_A_DP_PORT	P0	//使用宏定义数码管段码口//共阴极数码管显示0~F的段码数据
u8 gsmg_code[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};	/*******************************************************************************
* 函 数 名       : delay_10us
* 函数功能		 : 延时函数,ten_us=1时,大约延时10us
*******************************************************************************/
void delay_10us(u16 ten_us)
{while(ten_us--);	
}/*******************************************************************************
* 函 数 名       : key_matrix_ranks_scan
* 函数功能		 : 使用行列式扫描方法,检测矩阵按键是否按下,按下则返回对应键值
* 输    入       : 无
* 输    出    	 : key_value:1-16,对应S1-S16键,0:按键未按下
*******************************************************************************/
u8 key_matrix_ranks_scan(void)
{u8 key_value=0;KEY_MATRIX_PORT=0xf7;//给第一列赋值0,其余全为1if(KEY_MATRIX_PORT!=0xf7)//判断第一列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第一列按键按下后的键值	{case 0x77: key_value=1;break;case 0xb7: key_value=5;break;case 0xd7: key_value=9;break;case 0xe7: key_value=13;break;}}while(KEY_MATRIX_PORT!=0xf7);//等待按键松开	KEY_MATRIX_PORT=0xfb;//给第二列赋值0,其余全为1if(KEY_MATRIX_PORT!=0xfb)//判断第二列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第二列按键按下后的键值	{case 0x7b: key_value=2;break;case 0xbb: key_value=6;break;case 0xdb: key_value=10;break;case 0xeb: key_value=14;break;}}while(KEY_MATRIX_PORT!=0xfb);//等待按键松开	KEY_MATRIX_PORT=0xfd;//给第三列赋值0,其余全为1if(KEY_MATRIX_PORT!=0xfd)//判断第三列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第三列按键按下后的键值	{case 0x7d: key_value=3;break;case 0xbd: key_value=7;break;case 0xdd: key_value=11;break;case 0xed: key_value=15;break;}}while(KEY_MATRIX_PORT!=0xfd);//等待按键松开	KEY_MATRIX_PORT=0xfe;//给第四列赋值0,其余全为1if(KEY_MATRIX_PORT!=0xfe)//判断第四列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第四列按键按下后的键值	{case 0x7e: key_value=4;break;case 0xbe: key_value=8;break;case 0xde: key_value=12;break;case 0xee: key_value=16;break;}}while(KEY_MATRIX_PORT!=0xfe);//等待按键松开return key_value;		
}/*******************************************************************************
* 函 数 名       : key_matrix_flip_scan
* 函数功能		 : 使用线翻转扫描方法,检测矩阵按键是否按下,按下则返回对应键值
* 输    入       : 无
* 输    出    	 : key_value:1-16,对应S1-S16键,0:按键未按下
*******************************************************************************/
u8 key_matrix_flip_scan(void)
{static u8 key_value=0;KEY_MATRIX_PORT=0x0f;//给所有行赋值0,列全为1if(KEY_MATRIX_PORT!=0x0f)//判断按键是否按下{delay_10us(1000);//消抖if(KEY_MATRIX_PORT!=0x0f){//测试列KEY_MATRIX_PORT=0x0f;switch(KEY_MATRIX_PORT)//保存行为0,按键按下后的列值	{case 0x07: key_value=1;break;case 0x0b: key_value=2;break;case 0x0d: key_value=3;break;case 0x0e: key_value=4;break;}//测试行KEY_MATRIX_PORT=0xf0;switch(KEY_MATRIX_PORT)//保存列为0,按键按下后的键值	{case 0x70: key_value=key_value;break;case 0xb0: key_value=key_value+4;break;case 0xd0: key_value=key_value+8;break;case 0xe0: key_value=key_value+12;break;}while(KEY_MATRIX_PORT!=0xf0);//等待按键松开	}}elsekey_value=0;		return key_value;		
}/*******************************************************************************
* 函 数 名       : main
* 函数功能		 : 主函数
*******************************************************************************/
void main()
{	u8 key=0;while(1){key=key_matrix_ranks_scan();if(key!=0)SMG_A_DP_PORT=gsmg_code[key-1];//得到的按键值减1换算成数组下标对应0-F段码		}		
}
实验效果

实验现象如下:当按下S1-S16键,最左边数码管对应显示0-F

在这里插入图片描述


感谢观看,如对内容有疑惑或补充,欢迎留言讨论,共同进步!!!

在这里插入图片描述

这篇关于基于C51实现按键控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/lucklycoder/article/details/126051166
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/814170

相关文章

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分