一款轻量级的 iOS 图像缓存 (来源oschina)

2024-03-15 16:18

本文主要是介绍一款轻量级的 iOS 图像缓存 (来源oschina),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://www.oschina.net/translate/a-lightweight-ios-image-cache?lang=chs&page=2#

这玩意轻巧归轻巧,但是也用到了几个其他的第三方库,配置起来不方便。

英文原文: A Lightweight iOS Image Cache

http://chairnerd.seatgeek.com/a-lightweight-ios-image-cache/

A Lightweight iOS Image Cache

A flexible image caching library for image rich iOS applications

Our iOS app is image rich. To create appealing views we relyheavily on performer images, all of which must first be fetched from a remote server. If eachimage needed to be fetched from the server again every time you opened the app, the experiencewouldn’t be great, so local caching of remote images is a must.

Version 1 - Ask for an image, get it from disk

Our first image cache was simple but effective. For each image view we’d ask for animage from cache, using its remote URL as the cache key. If it was available in the local disk cache aUIImage would be created from the file on disk, and returned immediately. Ifit wasn’t found on disk it would be fetched async from the remote URL, cached to disk, then anewUIImage returned.

For our purposes at the time this was perfectly adequate. But it had one point of unnecessaryweakness: each cache request required the image to be loaded again from disk, whichcomes with the performance cost of disk access and image data decoding.

Version 2 - Memory caching

Thankfully Apple’s UIImage has a built in memory cache. So by changing a single line of codeour image cache could go from being a disk only cache to a disk and memory cache.

When you ask UIImage for an image via imageNamed: it first checks its own memory cacheto see if the image has been loaded recently. If so, you get a newUIImage at zero cost. So instead of something like this:

return [UIImage imageWithContentsOfFile:[self absolutePathForURL:url]];

We could get memory caching for free, simply by doing this:

return [UIImage imageNamed:[self relativePathForURL:url]];

UIImage will search its memory cache and, if found, return the image at no cost. If it isn’t in the memory cache it will be loaded from disk, with the usual performance penalty.

Version 3 - Fetch queues, prefetching, and variable urgency

As the design of our app evolved we became increasingly image greedy, wanting to show richer,larger images, and more of them.

Getting these larger images on screen as quickly as possible is critical to the experience,and simply asking the cache for each image at display time wasn’t going to cut it. Larger images take longer to load over the network, and asking for too many at once will result in none of them loading until it’s too late. Careful consideration of when the image cache is checked and when images are fetched from remote was needed. We wanted precaching and fetch queues.

fastQueue and slowQueue

We settled on two queues, one serial and one parallel. Images that are required on screenurgently go into the parallel queue (fastQueue), and images that we’ll probably need latergo into the serial queue (slowQueue).

In terms of a UITableView implementation, this means that a table cell appearing on screenasks for its image fromfastQueue, and every off screen row’s image is prefetched by addingit toslowQueue.

We’ll need it later

Assuming we request a page of 30 new events from the server, once those results arrivewe can queue up prefetching for each of their images.

- (void)pageLoaded:(NSArray *)newEvents {
    for (SGEvent *event in newEvents) {
        [SGImageCache slowGetImageForURL:event.imageURL thenDo:nil];
    }
}

The slowGetImageForURL: method adds the image fetch to slowQueue, allowing them to be fetched one by one, without bogging down the network.

The thenDo: completion block is empty in this case because we don’t need to do anything withthe image yet. All we want is to make sure it’s in the local disk cache, ready for immediate use once its table cell scrolls onto screen.

We need it now

Cells that are appearing on screen want their images immediately. So in the table cell subclass:

- (void)setEvent:(SGEvent *)event {
    __weak SGEventCell *me = self;
    [SGImageCache getImageForURL:event.imageURL thenDo:^(UIImage *image) {
        me.imageView.image = image;
    }];
}

The getImageForURL: method adds the image fetch to fastQueue, which means it will be done in parallel, as soon as iOS allows. If the image was already inslowQueue it will be moved to fastQueue, to avoid wasteful duplicate requests.

Always async

But wait, isn’t getImageForURL: an async method? If you know the image is already in cache, don’t you want to use it immediately, on the main thread? Turns out the intuitive answer to that is wrong.

Loading images from disk is expensive, and so is image decompression. Table cells are configured and added while the user is scrolling the table, and the last thing you want todo while scrolling is risk blocking the main thread. Stutters will happen.

Using getImageForURL: takes the disk loading off the main thread, so that when thethenDo:block fires it has a UIImage instance all ready to go, without risk of scroll stutters. If the image was already in the local cache then the completion block will fire on the next runcycle, and the user won’t notice the difference. What they will notice is that scrolling didn’t stutter.

Thought we needed it but now we don’t

If the user scrolls quickly down a table, tens or hundreds of cells will appear on screen, askfor an image fromfastQueue, then disappear off screen. Suddenly the parallel queue is flooding the network with requests for images that are no longer needed. When the user finallystops scrolling, the cells that settle into view will have their image requests backed up behind tens of other non urgent requests and the network will be choked. The user will be staring at a screen full of placeholders while the cache diligently fetches a backlog ofimages that no one is looking at.

This is where moveTaskToSlowQueueForURL: comes in.

// a table cell is going off screen
- (void)tableView:(UITableView *)table
        didEndDisplayingCell:(UITableViewCell *)cell
        forRowAtIndexPath:(NSIndexPath*)indexPath {

    // we don't need it right now, so move it to the slow queue         
    [SGImageCache moveTaskToSlowQueueForURL:[[(id)cell event] imageURL]];
}

This ensures that the only fetch tasks on fastQueue are ones that genuinely need to befast. Anything that was urgent but now isn’t gets moved toslowQueue.

Priorities and Options

There are already quite a few iOS image cache libraries out there. Some of them are highly technical and many of them offer a range of flexible features. Ours is neither highly technical nor does it have many features. For our uses we had three basic priorities:

Priority 1: The best possible frame rate

Many libraries focus heavily on this, with some employing highly custom and complex approaches, though benchmarks don’t show conclusively that the efforts have paid off. We’vefound that getting the best frame rates is all about:

  1. Moving disk access (and almost everything else) off the main thread.
  2. Using UIImage’s memory cache to avoid unnecessary disk access and decompression.
Priority 2: Getting the most vital images on screen first

Most libraries consider queue management to be someone else’s concern. For our app it’s almostthe most important detail.

Getting the right images on screen at the right time boils down to a simple question: “Do Ineed it now or later?” Images that are needed right now get loaded in parallel, and everythingelse is added to the serial queue. Anything that was urgent but now isn’t gets shunted from fastQueue to slowQueue. And while fastQueue is active, slowQueue is suspended.

This gives urgently required images exclusive access to the network, while also ensuring thatwhen a non urgent image later becomes urgently needed, it’s already in the cache, ready to go.

Priority 3: An API that’s as simple as possible

Most libraries get this right. Many provide UIImageView categories for hiding away the gritty details, and most make the process of fetching an image as painless as possible. For our library we settled on three main methods, for the three things we’re regularly doing:

Get an image urgently
__weak SGEventCell *me = self;
[SGImageCache getImageForURL:event.imageURL thenDo:^(UIImage *image) {
    me.imageView.image = image;
}];
Queue a fetch for an image that we’ll need later
[SGImageCache slowGetImageForURL:event.imageURL thenDo:nil];
Inform the cache that an urgent image fetch is no longer urgent
[SGImageCache moveTaskToSlowQueueForURL:event.imageURL];

Conclusion

By focusing on prefetching, queue management, moving expensive tasks off the main thread, andrelying on UIImage’s built in memory cache, we’ve managed to get great results in a simple package.

  • SGImageCache on GitHub
  • SGImageCache on CocoaPods
  • SGImageCache on CocoaDocs

这篇关于一款轻量级的 iOS 图像缓存 (来源oschina)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812533

相关文章

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

PyCharm如何更改缓存位置

《PyCharm如何更改缓存位置》:本文主要介绍PyCharm如何更改缓存位置的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm更改缓存位置1.打开PyCharm的安装编程目录2.将config、sjsystem、plugins和log的路径

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.