PSP - 蛋白质结构预测 OpenFold Multimer 模型训练参数与配置

本文主要是介绍PSP - 蛋白质结构预测 OpenFold Multimer 模型训练参数与配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132575709

Img
OpenFold Multimer 是用于预测蛋白质多聚体结构的计算方法。基于OpenFold 的单体预测框架,利用深度学习技术,结合序列、进化和互作信息,来推断蛋白质之间的相互作用界面和空间排列。Openfold Multimer 可以处理不同类型的多聚体,包括同源二聚体、异源二聚体、同源多聚体和异源多聚体,优势在于可以在没有任何实验数据或模板的情况下,生成高质量的多聚体结构预测。

工程:GitHub: aqlaboratory/openfold

其他参考文章:

  • 蛋白质结构预测 OpenFold Multimer 训练过程的特征预处理
  • 开源框架 OpenFold 模版 (Template) 逻辑与 HHsearch 搜索模版
  • 基于开源框架 OpenFold Multimer 蛋白质复合物的结构预测与BugFix
  • 基于开源框架 OpenFold 训练的 Finetuning 模型与推理逻辑评估
  • 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

1. 预处理

准备已搜索完成的 MSA 文件,使用脚本 scripts/precompute_alignments.py

1.1 准备 mmcif_cache.json

使用 scripts/generate_mmcif_cache.py 脚本,处理 mmcif 文件的缓存:

nohup python3 -u scripts/generate_mmcif_cache.py [your folder]/af2-data-v230/pdb_mmcif/mmcif_files/ mmcif_cache.json --no_workers 128 > nohup.mmcif_cache.out &tail -f nohup.mmcif_cache.out

其中, generate_mmcif_cache.py 运行耗时大约 40min,mmcif_cache.json 的 size 是252M。mmcif_cache.json 输出结果,包括PDB信息,即:

{"4ewn": {"release_date": "2012-12-05","chain_ids": ["D"],"seqs": ["MLAKRI..."],"no_chains": 1,"resolution": 1.9},"5m9r": {"release_date": "2017-02-22","chain_ids": ["A", "B"],"seqs": ["MQDNS...","MQDNS..."],"no_chains": 2,"resolution": 1.44},
# ...

1.2 准备 chain_data_cache.json

使用 scripts/generate_chain_data_cache.py 脚本,处理 mmcif chain 文件的缓存:

nohup python3 -u scripts/generate_chain_data_cache.py [your folder]/af2-data-v230/pdb_mmcif/mmcif_files/ chain_data_cache.json --cluster_file clusters-by-entity-40.txt --no_workers 128 > nohup.chain_data_cache.out &tail -f nohup.chain_data_cache.out

其中,generate_chain_data_cache.py 运行耗时大约 2h,chain_data_cache.json 的 size 是 292 M。chain_data_cache.json 输出结果,包括单链信息,即:

{"1p2g_A": {"release_date": "2003-09-02","seq": "SRPLS...","resolution": 2.3,"cluster_size": -1},"7u5p_A": {"release_date": "2022-06-22","seq": "MGAAA...","resolution": 3.14,"cluster_size": -1},
# ...

2. 配置训练脚本

基础训练脚本 train_openfold.py

python3 train_openfold.py mmcif_dir/ alignment_dir/ template_mmcif_dir/ output_dir/ \2021-10-10 \ --template_release_dates_cache_path mmcif_cache.json \ --precision bf16 \--gpus 8 \--replace_sampler_ddp=True \--seed 4242022 \ # in multi-gpu settings, the seed must be specified--deepspeed_config_path deepspeed_config.json \--checkpoint_every_epoch \--resume_from_ckpt ckpt_dir/ \--train_chain_data_cache_path chain_data_cache.json \--obsolete_pdbs_file_path obsolete.dat

具体参数如下:

具体参数:

  • mmcif_dir[your folder]/af2-data-v230/pdb_mmcif/mmcif_files/
  • alignment_dir:特征文件夹
  • template_mmcif_dir[your folder]/af2-data-v230/pdb_mmcif/mmcif_files/
  • output_dir/:输出文件夹
  • max_template_date:默认2021-10-10,模版时间
  • template_release_dates_cache_path:预处理完成
  • precision:精度
  • gpus:GPU数量
  • replace_sampler_ddp:参数
  • seed:种子
  • deepspeed_config_path:deepspeed 配置,工程配置为主
  • checkpoint_every_epoch:缓存
  • resume_from_ckpt:训练恢复,初次训练不需设置
  • train_chain_data_cache_path:预处理完成
  • obsolete_pdbs_file_path[your folder]/af2-data-v230/pdb_mmcif/obsolete.dat

其中,obsolete.dat (过时的) 主要是 PDB 的一些更新与映射,即:

 LIST OF OBSOLETE COORDINATE ENTRIES AND SUCCESSORS
OBSLTE    31-JUL-94 116L     216L
OBSLTE    15-APR-98 125D     1AW6
OBSLTE    20-SEP-99 14PS     1QJB
OBSLTE    30-OCT-78 151C     251C
OBSLTE    15-JAN-91 156B     256B
# ...

更新之后的训练逻辑 train_openfold.py (Monomoer),如下:

python3 train_openfold.py \--train_data_dir [your folder]/af2-data-v230/pdb_mmcif/mmcif_files/ \--train_alignment_dir mydata/alignment_dir/ \--template_mmcif_dir [your folder]/af2-data-v230/pdb_mmcif/mmcif_files/ \--output_dir mydata/output_dir/ \--max_template_date "2021-10-10" \--template_release_dates_cache_path mmcif_cache.json \--precision bf16 \--gpus 1 \--replace_sampler_ddp=True \--seed 42 \--deepspeed_config_path deepspeed_config.json \--checkpoint_every_epoch \--train_chain_data_cache_path chain_data_cache.json \--obsolete_pdbs_file_path [your folder]/af2-data-v230/pdb_mmcif/obsolete.dat

训练日志:

# ...
Loading extension module utils...
Time to load utils op: 0.0003807544708251953 seconds| Name  | Type          | Params
----------------------------------------
0 | model | AlphaFold     | 93.2 M
1 | loss  | AlphaFoldLoss | 0     
----------------------------------------
93.2 M    Trainable params
0         Non-trainable params
93.2 M    Total params
372.916   Total estimated model params size (MB)
/opt/conda/envs/openfold/lib/python3.9/site-packages/torch/utils/data/dataloader.py:563: UserWarning: This DataLoader will create 16 worker processes in total. Our suggested max number of worker in current system is 10, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.warnings.warn(_create_warning_msg(
/opt/conda/envs/openfold/lib/python3.9/site-packages/pytorch_lightning/trainer/data_loading.py:489: UserWarning: One of given dataloaders is None and it will be skipped.rank_zero_warn("One of given dataloaders is None and it will be skipped.")
Epoch 0:   0%|                   | 54/10000 [26:31<81:25:01, 29.47s/it, loss=132, v_num=]

Multimer 的 train_openfold.py 参数配置,额外增加参数如下:

  • --config_preset "model_1_multimer_v3",Multimer 配置
  • --train_mmcif_data_cache_path mmcif_cache.json,PDB 配置

即:

python3 train_openfold.py \--train_data_dir [your folder]/af2-data-v230/pdb_mmcif/mmcif_files/ \--train_alignment_dir mydata/alignment_dir/ \--train_mmcif_data_cache_path mmcif_cache.json \--template_mmcif_dir [your folder]/af2-data-v230/pdb_mmcif/mmcif_files/ \--output_dir mydata/output_dir/ \--max_template_date "2021-10-10" \--config_preset "model_1_multimer_v3" \--template_release_dates_cache_path mmcif_cache.json \--precision bf16 \--gpus 1 \--replace_sampler_ddp=True \--seed 42 \--deepspeed_config_path deepspeed_config.json \--checkpoint_every_epoch \--train_chain_data_cache_path chain_data_cache.json \--obsolete_pdbs_file_path [your folder]/af2-data-v230/pdb_mmcif/obsolete.dat

3. Bug

Bug: docker shared memory limit

日志:

RuntimeError: DataLoader worker (pid 30285) is killed by signal: Bus error. It is possible that dataloader's workers are out of shared memory. Please try to raise your shared memory limit.

修改之后的 Docker 启动程序,添加 --shm-size 参数:

nvidia-docker run -it --name openfold-v3 --shm-size 72G -v [nfs]:[nfs] openfold:v1.03

缓存 Docker

docker ps -a | grep openfold# 提交 Tag
docker ps -l
docker commit [container id] openfold:v1.03# 准备远程 Tag
docker tag openfold:v1.03 harbor.[ip].com/openfold:v1.03
docker images | grep "openfold"# 推送至远程
docker push harbor.[ip].com/openfold:v1.03

参考:

  • CSDN - Docker之通过资源控制来限制风险
  • 知乎 - Dataloader中的num_workers设置与docker的shared memory相关问题

这篇关于PSP - 蛋白质结构预测 OpenFold Multimer 模型训练参数与配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810627

相关文章

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过