第五十五天| 583. 两个字符串的删除操作、72. 编辑距离

2024-03-15 00:04

本文主要是介绍第五十五天| 583. 两个字符串的删除操作、72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode 583. 两个字符串的删除操作

题目链接:583 两个字符串的删除操作

题干:给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

每步 可以删除任意一个字符串中的一个字符。

思考:动态规划。本题中的步数可以看作删除字母,使得两单词最终处理为相同字母组。

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:使得 以i - 1结尾的单词word1和以j - 1结尾的单词word2 相同所需的最小步数。

  • 确定递推公式

从dp[i][j]的定义可以看出,字母比较就两种情况

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],最少的操作次数为dp[i - 1][j - 1] + 2

当然要取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

又因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

  • dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。同理 dp[0][j] = j。

  • 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1; 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  • 举例推导dp数组

举例:word1:"sea",word2:"eat",推导dp数组状态图如下:

代码:

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:使得 以i - 1结尾的单词word1和以j - 1结尾的单词word2 相同所需的最小步数 vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 1; i <= word1.size(); i++)     //单词word2为空的情况dp[i][0] = i;for (int j = 1; j <= word2.size(); j++)     //单词word1为空的情况dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {           //遍历单词word1for(int j = 1; j <= word2.size(); j++) {        //遍历单词word2if (word1[i - 1] == word2[j - 1])dp[i][j] = dp[i - 1][j - 1];        //字母相同则无需无需删除字母elsedp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + 1;     //字母不相同则选一单词删除字母,取最小值}}return dp[word1.size()][word2.size()];}
};

思考:动态规划。本题也可以从求公共子序列入手,要删除的元素个数(即步数)为两单词长度减去两倍公共子序列长度。具体如何求公共子序列:1143 最长公共子序列

代码: 

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:单词word1的处理区间[0, i - 1]与单词word2的处理区间[0, j - 1]中,存在的最长公共子序列的长度vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));     for (int i = 1; i <= word1.size(); i++) {           //遍历单词word1for (int j = 1; j <= word2.size(); j++) {       //遍历单词word2if (word1[i - 1] == word2[j - 1])//当前处理两字母相等 则 取两单词均缩小处理区间的最长公共子序列长度加一dp[i][j] = dp[i - 1][j - 1] + 1;        else //当前处理两字母不相等 则 取任选一单词缩小处理区间的最长公共子序列长度,两长度中的较大值dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);     }}return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];        //两单词去除最长公共子序列}
};

Leetcode 72. 编辑距离

题目链接:72 编辑距离

题干:给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

思考:动态规划。本题要先想清楚:真正要求的是将word1和word2变成相同单词的操作次数。

题干中删除word1字母的操作 可以等价为 插入word2字母的操作;插入word1字母的操作 可以等价为 删除word2字母的操作。下面就直接考虑删除操作不考虑插入操作。

因此本题与上题的区别在 确定递推公式中:

当word1[i - 1] 与 word2[j - 1]不相同的时候,有不同的三种操作:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1](同向word1中插入),最少操作次数为dp[i][j - 1] + 1

情况三:替换word1[i - 1],最少的操作次数为dp[i - 1][j - 1] + 1

当然要取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

代码:

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:对以i- 1结尾的单词word1和以j - 1结尾的单词word2操作,让处理后两单词相同的最少操作次数vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++)     //单词word2为空的情况dp[i][0] = i;for (int j = 1; j <= word2.size(); j++)     //单词word1为空的情况dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {           //遍历单词word1for (int j = 1; j <= word2.size(); j++) {       //遍历单词word2if (word1[i - 1] == word2[j - 1])//当前两字母相同则不用处理dp[i][j] = dp[i - 1][j - 1];    else//当前两字母不同则考虑替换word1的字母,删除word1的字母以及删除word2的字母dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j -1])) + 1;}}return dp[word1.size()][word2.size()];}
};

自我总结:

        理解公共子序列问题的关键在于删除操作,两字符串的操作含义同dp数组的含义变化而变化。动态规划是在每次操作中考虑每种情况,统一处理。

这篇关于第五十五天| 583. 两个字符串的删除操作、72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810148

相关文章

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

Linux命令rm如何删除名字以“-”开头的文件

《Linux命令rm如何删除名字以“-”开头的文件》Linux中,命令的解析机制非常灵活,它会根据命令的开头字符来判断是否需要执行命令选项,对于文件操作命令(如rm、ls等),系统默认会将命令开头的某... 目录先搞懂:为啥“-”开头的文件删不掉?两种超简单的删除方法(小白也能学会)方法1:用“--”分隔命

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

Java 字符串操作之contains 和 substring 方法最佳实践与常见问题

《Java字符串操作之contains和substring方法最佳实践与常见问题》本文给大家详细介绍Java字符串操作之contains和substring方法最佳实践与常见问题,本文结合实例... 目录一、contains 方法详解1. 方法定义与语法2. 底层实现原理3. 使用示例4. 注意事项二、su

Python实现自动化删除Word文档超链接的实用技巧

《Python实现自动化删除Word文档超链接的实用技巧》在日常工作中,我们经常需要处理各种Word文档,本文将深入探讨如何利用Python,特别是借助一个功能强大的库,高效移除Word文档中的超链接... 目录为什么需要移除Word文档超链接准备工作:环境搭建与库安装核心实现:使用python移除超链接的