第五十五天| 583. 两个字符串的删除操作、72. 编辑距离

2024-03-15 00:04

本文主要是介绍第五十五天| 583. 两个字符串的删除操作、72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode 583. 两个字符串的删除操作

题目链接:583 两个字符串的删除操作

题干:给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

每步 可以删除任意一个字符串中的一个字符。

思考:动态规划。本题中的步数可以看作删除字母,使得两单词最终处理为相同字母组。

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:使得 以i - 1结尾的单词word1和以j - 1结尾的单词word2 相同所需的最小步数。

  • 确定递推公式

从dp[i][j]的定义可以看出,字母比较就两种情况

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],最少的操作次数为dp[i - 1][j - 1] + 2

当然要取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

又因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

  • dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。同理 dp[0][j] = j。

  • 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1; 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  • 举例推导dp数组

举例:word1:"sea",word2:"eat",推导dp数组状态图如下:

代码:

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:使得 以i - 1结尾的单词word1和以j - 1结尾的单词word2 相同所需的最小步数 vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 1; i <= word1.size(); i++)     //单词word2为空的情况dp[i][0] = i;for (int j = 1; j <= word2.size(); j++)     //单词word1为空的情况dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {           //遍历单词word1for(int j = 1; j <= word2.size(); j++) {        //遍历单词word2if (word1[i - 1] == word2[j - 1])dp[i][j] = dp[i - 1][j - 1];        //字母相同则无需无需删除字母elsedp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + 1;     //字母不相同则选一单词删除字母,取最小值}}return dp[word1.size()][word2.size()];}
};

思考:动态规划。本题也可以从求公共子序列入手,要删除的元素个数(即步数)为两单词长度减去两倍公共子序列长度。具体如何求公共子序列:1143 最长公共子序列

代码: 

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:单词word1的处理区间[0, i - 1]与单词word2的处理区间[0, j - 1]中,存在的最长公共子序列的长度vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));     for (int i = 1; i <= word1.size(); i++) {           //遍历单词word1for (int j = 1; j <= word2.size(); j++) {       //遍历单词word2if (word1[i - 1] == word2[j - 1])//当前处理两字母相等 则 取两单词均缩小处理区间的最长公共子序列长度加一dp[i][j] = dp[i - 1][j - 1] + 1;        else //当前处理两字母不相等 则 取任选一单词缩小处理区间的最长公共子序列长度,两长度中的较大值dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);     }}return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];        //两单词去除最长公共子序列}
};

Leetcode 72. 编辑距离

题目链接:72 编辑距离

题干:给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

思考:动态规划。本题要先想清楚:真正要求的是将word1和word2变成相同单词的操作次数。

题干中删除word1字母的操作 可以等价为 插入word2字母的操作;插入word1字母的操作 可以等价为 删除word2字母的操作。下面就直接考虑删除操作不考虑插入操作。

因此本题与上题的区别在 确定递推公式中:

当word1[i - 1] 与 word2[j - 1]不相同的时候,有不同的三种操作:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1](同向word1中插入),最少操作次数为dp[i][j - 1] + 1

情况三:替换word1[i - 1],最少的操作次数为dp[i - 1][j - 1] + 1

当然要取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

代码:

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:对以i- 1结尾的单词word1和以j - 1结尾的单词word2操作,让处理后两单词相同的最少操作次数vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++)     //单词word2为空的情况dp[i][0] = i;for (int j = 1; j <= word2.size(); j++)     //单词word1为空的情况dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {           //遍历单词word1for (int j = 1; j <= word2.size(); j++) {       //遍历单词word2if (word1[i - 1] == word2[j - 1])//当前两字母相同则不用处理dp[i][j] = dp[i - 1][j - 1];    else//当前两字母不同则考虑替换word1的字母,删除word1的字母以及删除word2的字母dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j -1])) + 1;}}return dp[word1.size()][word2.size()];}
};

自我总结:

        理解公共子序列问题的关键在于删除操作,两字符串的操作含义同dp数组的含义变化而变化。动态规划是在每次操作中考虑每种情况,统一处理。

这篇关于第五十五天| 583. 两个字符串的删除操作、72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810148

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、