Python中requests、aiohttp、httpx性能对比

2024-03-14 15:28

本文主要是介绍Python中requests、aiohttp、httpx性能对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中,有许多用于发送HTTP请求的库,其中最受欢迎的是requests、aiohttp和httpx。这三个库的性能和功能各不相同,因此在选择使用哪个库时,需要考虑到自己的需求和应用场景。

首先,让我们来了解一下这三个库的基本介绍。

  • requests 是一个简单易用的HTTP库,它可以发送HTTP请求和处理HTTP响应。它的API简单易用,可以轻松地实现HTTP请求和响应的处理。

  • aiohttp 是一个异步HTTP客户端/服务器框架,它使用asyncio库实现异步IO操作。它支持HTTP/1.1和HTTP/2协议,可以轻松地处理大量并发请求。

  • httpx 是一个全新的HTTP客户端库,它提供了更加现代化的API和更好的性能。它支持异步和同步请求,支持HTTP/1.1和HTTP/2协议,还提供了WebSocket和HTTP/1.1协议升级的支持。

接下来,我们将对这三个库进行性能测试,以便更好地了解它们的性能和优缺点。

我们使用Python 3.9.1版本进行测试,测试的机器配置为Intel Core i7-7700HQ CPU @ 2.80GHz,16GB内存,Windows 10操作系统。

requests测试

首先,我们测试了发送1000个同步请求的时间。测试代码如下:

import requests
import time
start_time = time.time()
for i in range(1000):response = requests.get('https://www.baidu.com')
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  8.606025457382202

aiohttp测试

接下来,我们测试使用aiohttp发送1000个异步请求的时间。测试代码如下:

import aiohttp
import asyncio
import time
async def fetch(session, url):async with session.get(url) as response:return await response.read()
async def main():async with aiohttp.ClientSession() as session:tasks = []for i in range(1000):task = asyncio.ensure_future(fetch(session, 'https://www.baidu.com'))tasks.append(task)responses = await asyncio.gather(*tasks)
start_time = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  1.8979811668395996

httpx测试

最后,我们测试使用httpx发送1000个异步请求的时间。测试代码如下:

import httpx
import asyncio
import time
async def main():async with httpx.AsyncClient() as client:for i in range(1000):response = await client.get('https://www.baidu.com')
start_time = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  1.4310226440429688

从上述测试结果可以看出,httpx的性能最好,aiohttp的性能次之,requests的性能最差。但是,在实际应用中,我们需要根据具体的需求来选择合适的库。如果我们需要处理大量并发请求,那么aiohttp和httpx是更好的选择,因为它们支持异步IO操作,可以更好地处理大量并发请求。如果我们只需要发送一些简单的HTTP请求,那么requests是一个更简单和易用的选择。

这三个库各有优缺点,我们需要根据自己的需求和应用场景来选择合适的库。

这篇关于Python中requests、aiohttp、httpx性能对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808838

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar