C++进阶--mep和set的模拟实现

2024-03-14 14:12
文章标签 c++ 进阶 实现 模拟 set mep

本文主要是介绍C++进阶--mep和set的模拟实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

红黑树链接入口

底层容器

模拟实现set和map时常用的底层容器是红黑树
红黑树是一种自平衡的搜索二叉树,通过对节点进行颜色标记来保持平衡。

在模拟实现set和map时,可以使用红黑树来按照元素的大小自动排序,并且保持插入和删除操作的高效性。set的每个节点只存储一个键值,不需要额外的值;而map每个节点存储的是一个键值对,值与键保持关联通过红黑树的特性,可以根据快速查找,插入和删除对应的节点元素

红黑树的改造

#pragma once
#include<vector>
enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;T _data;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}};//红黑树的迭代器template<class T,class Ptr,class Ref>struct RBTreeIterator{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T,Ptr,Ref> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}Self& operator++(){if (_node->_right){Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else{Node* cur = _node;Node* parent = cur->_parent;while (parent&&cur==parent->_right){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}Self& operator--(){if (_node->_left){Node* subRight = _node->_left;while (subRight->_right){subRight = subRight->_right;}_node = subRight;}else{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operator == (const Self & s){return _node == s._node;}};
//set->RBTree<K,K,SetOfT>
//map->RBTree<K,pair<K,V>,MapKeyOfT>
template<class K,class T,class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef RBTreeIterator<T,T*,T&> iterator;typedef RBTreeIterator<T, const T*, const T&> const_iterator;const_iterator begin() const{Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return const_iterator(subLeft);}iterator begin(){Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return iterator(subLeft);}const_iterator end() const{return const_iterator(nullptr);}iterator end(){return iterator(nullptr);}iterator Find(const K& key){KeyOfT kot;Node* cur = _root;//通过比较确定key节点的位置while (cur){if (kot(cur->_data) < key){cur = cur->_right;}else if (kot(cur->_data) > key){cur = cur->_left;}else{return iterator(cur);}}//找不到返回最后的endreturn end();}pair<iterator,bool> Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root),true);}//确定插入位置KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return make_pair(iterator(cur), false);}}//确定cur节点和p节点的位置关系cur = new Node(data);//要记住当前节点的位置Node* newnode = cur;if (kot(parent->_data )< kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//情况一if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上处理cur = grandfather;parent = cur->_parent;}else//情况2{if (cur == parent->_left){//      g//    p    u//  cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g//    p    u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转完的子树的根节点必为黑,这时就不用向上调整处理了}}else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else//情况2{if (cur == parent->_right){//      g//    u    p//           cRotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g//    u    p//        cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转完的子树的根节点必为黑,这时就不用向上调整处理了}}}_root->_col = BLACK;return make_pair(iterator(newnode), true);}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}private:Node* _root = nullptr;
};

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

红黑树的迭代器

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

map和set的模拟实现

Mymap.h

namespace fnc
{template<class K,class V>class map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin() const{return _t.begin();}const_iterator end() const {return _t.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}iterator find(const K& key){return _t.Find(key);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}

Myset.h

namespace fnc
{template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename RBTree<K, const K, SetKeyOfT>::iterator iterator;typedef typename RBTree<K, const K, SetKeyOfT>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}pair<iterator,bool> insert(const K& key){return _t.Insert(key);}private:RBTree<K, const K, SetKeyOfT> _t;};
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

测试

void test_map1(){map<int, int> m;int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){m.insert(make_pair(e,e));}map<int, int>::iterator it = m.begin();while (it != m.end()){it->second += 100;cout << it->first << "," << it->second << endl;++it;}cout << endl;}

在这里插入图片描述
在这里插入图片描述

void test_set1(){set<int> s;int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){s.insert(e);}set<int>::iterator it = s.begin();while (it != s.end()){cout << *it << " ";++it;}cout << endl;}

在这里插入图片描述

operator[]

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

void test_map2(){string arr[] = { "西瓜","草莓","香蕉","苹果","西瓜","草莓","香蕉" ,"西瓜","草莓","西瓜" };map<string, int> countmap;for (auto& e : arr){countmap[e]++;}for (auto& kv : countmap){cout << kv.first << ":" << kv.second << " ";}cout << endl;}

在这里插入图片描述

完善

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

验证

void test_map3(){map<int, int> m;int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){m.insert(make_pair(e, e));}const map<int, int> m1 = m;map<int, int>::const_iterator it = m1.begin();while (it != m1.end()){cout << it->first << "," << it->second << endl;++it;}cout << endl;map<int, int>::iterator it2 = m.find(15);--it2;cout << it2->first << "," << it2->second << endl;}

在这里插入图片描述
在这里插入图片描述

这篇关于C++进阶--mep和set的模拟实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808675

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima