操作系统原理请求分页系统中的置换算法

2024-03-14 13:08

本文主要是介绍操作系统原理请求分页系统中的置换算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、 题目要求
  • 二、程序功能及设计思路
  • 三、数据结构及算法设计
  • 四、程序运行情况
  • 五、遇到的困难及解决办法、实习心得或良好建议


一、 题目要求

1.通过如下方法产生一指令序列,共320条指令。
A. 在[1,32k-2]的指令地址之间随机选取一起点M,访问M;
B. 顺序访问M+1;
C. 在[0,M-1]中随机选取M1,访问M1;
D. 顺序访问M1+1;
E. 在[M1+2,32k-2]中随机选取M2,访问M2;
F. 顺序访问M2+1;
G. 重复 A—F,直到执行320次指令。
2. 指令序列变换成页地址流设:(1)页面大小为1K;
(2)用户虚存容量为32K。
3. 计算并输出下述各种算法在不同内存页块(页块个数范围:8-32)下的命中率。
A. 先进先出(FIFO)页面置换算法
B. 最近最久未使用(LRU)页面置换算法
C. 最佳(Optimal)页面置换算法
(命中率=1-页面失效次数/页地址流长度)

二、程序功能及设计思路

程序功能:能随机产生指令序列,并实现三种置换算法。
设计思路:指令序列通过srand函数生成种子实现。
先进先出(FIFO)页面置换算法,比较简单,如果当前页块中没有当前调入的页面,则直接将最早进来的页面淘汰。通过vector自带的erase()和push_back()即可实现。
最近最久未使用(LRU)页面置换算法 ,需要将停留在页块中时间最久的页面淘汰。于是创建了一个PAGE结构体,结构体中含有页名和停留在页块中的时间两变量。每次添加新的页面时,停留在页块中的时间+1。如果添加的页面在页块中已经存在,则将该页面时间清零,否则则找出停留在页块中时间最大的页面,将其淘汰,添加新的页面。
最佳(Optimal)页面置换算法,该算法选择的被淘汰页面,将是以后永远不使用的,或许是在最长(未来)时间内不再被访问的页面,所以每次新的页面调入时,记录并比较停留在页块中页面再次调入页块的时间,选出时间最大的淘汰。

三、数据结构及算法设计

(1)设计:数据结构

页面描述

struct PAGE {int id;//页号int time;//自上次被访问以来所经历的时间t
};

(2)算法设计
产生指令序列

void generate() {int cnt = 0;srand(time(0));bool CF = 1;while (CF) {int M = rand() % max_add + 1;//在[1,32K-2]的指令地址之间随机选取一起点Mins[cnt++] = M;if (cnt >= N) { break; }ins[cnt++] = M + 1;//顺序访问M+1if (cnt >= N) { break; }int M1 = rand() % M;ins[cnt++] = M1;if (cnt >= N) { break; }ins[cnt++] = M1 + 1;//顺序访问M1+1if (cnt >= N) { break; }int M2 = rand() % (max_add - M1 - 1) + (M1 + 2);// 在[M1+2,32K-2]中随机选取M2ins[cnt++] = M2;if (cnt >= N)break;ins[cnt++] = M2 + 1;//顺序访问M2+1if (cnt >= N)break;}for (int i = 0; i < N; i++) {ins[i] = ins[i] / 1024;//得到页号}
}

先进先出(FIFO)页面置换算法

double FIFO(int page) {double hit_num = 0;double unhit_num = 0;vector<int>temp;for (int i = 0; i < page; i++) {temp.push_back(-1);}for (int i = 0; i < N; i++) {vector<int>::iterator it = find(temp.begin(), temp.end(), ins[i]);if (it == temp.end()) {temp.erase(temp.begin());temp.push_back(ins[i]);unhit_num++;}//未命中else {hit_num++;}}return 100 * (1 - unhit_num / N);
}

最近最久未使用(LRU)页面置换算法

double LRU(int page) {double hit_num = 0;double unhit_num = 0;vector<PAGE>temp;for (int i = 0; i < page; i++) {temp.push_back(PAGE{ -1,0 });}vector<PAGE>::iterator it;for (int i = 0; i < N; i++) {for (it = temp.begin(); it != temp.end(); it++) {it->time++;}bool flag = false;for (it = temp.begin(); it != temp.end(); it++) {if (it->id == ins[i]) {flag = true;it->time = 0;hit_num++;break;}   }if (!flag) {//找到一个最大的vector<node>::iterator max_it = temp.begin();for (it = temp.begin(); it != temp.end(); it++) {if (it->time > max_it->time) {max_it = it;}}temp.erase(max_it);unhit_num++;temp.push_back(node{ ins[i],0 });}}return 100 * (1 - unhit_num / N);
}

最佳(Optimal)页面置换算法

double OPT(int page) {vector<int>temp;double hit_num = 0;double unhit_num = 0;for (int i = 0; i < page; i++) {temp.push_back(-1);//初始化}for (int i = 0; i < N; i++) {vector<int>::iterator it = find(temp.begin(), temp.end(), ins[i]);if (it == temp.end()) {//如果没找到unhit_num++;int maxtime = -1;vector<int>::iterator ans;for (it = temp.begin(); it != temp.end(); it++) {int cur = 0x3f3f3f3f;for (int j = i + 1; j < N; j++) {if (ins[j] == *it) {cur = j;break;}}if (cur > maxtime) { //找到之后最长时间未使用的maxtime = cur;ans = it;}}temp.erase(ans);temp.push_back(ins[i]);}else {hit_num++;}}return 100*(1-unhit_num/N);
}

四、程序运行情况

在这里插入图片描述

五、遇到的困难及解决办法、实习心得或良好建议

遇到的困难:在计算命中率时总是出现不合理的结果,例如-1200,或者各种高于100的数字。
解决办法:将定义为全局变量的unhit_time当作局部变量放入三个算法中,并逐步调试发现LRU中unhit_time++的时机不对,应该放在erase()那一块。
实习心得:这次实验难度并不高,但是考查的是对三种置换算法的理解。我课堂上并没能好好掌握该部分知识点,通过反复阅读ppt和做相关例题,终于明白了各种置换算法的实现步骤,学习能力得到提高。

这篇关于操作系统原理请求分页系统中的置换算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808521

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景