操作系统原理银行家算法

2024-03-14 13:08

本文主要是介绍操作系统原理银行家算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、 题目要求
  • 二、程序功能及设计思路
  • 三、数据结构及算法设计
  • 四、程序运行情况
  • 五、遇到的困难及解决办法、实习心得或良好建议


一、 题目要求

测试数据:m=3:种类型的资源(A,B,C,) 进程个数 n=5 Available=(2,3,3);
已分配资源数量 资源需求量
****A B C ******* A B C
P1 2 1 2 ******** 3 4 7
P2 4 0 2 ******** 1 3 4
P3 3 0 5 ******** 0 0 3
P4 2 0 4 ******** 2 2 1
P5 3 1 4 ******** 1 1 0
请求序列如下:
a: 进程 P2 请求资源(0,3,4)
b 进程 P4 请求资源(1,0,1)
c. 进程 P1 请求资源(2,0,1)
d. 进程 P3 请求资源(0,0,2)
尝试进行分配资源,并进行安全状态判别算法。

二、程序功能及设计思路

需求分析:银行家算法是一种最有代表性的避免死锁的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置仍可利用的资源,最大需求矩阵,分配矩阵,进程尚需的资源数四个数据结构。
安全状态判别算法也需要依赖以上四种数据结构得以实现。
所以程序功能必须含有试探分配,和判别系统是否处于安全状态。
设计思路:银行家算法:
设 Request是进程Pi的请求向量,如果 Requesti[j] = K,表示进程Pi需要K个j类型的资源。当Pi发出资源请求后,系统按下述步骤进行检査:
  (1) 如果 Requesti[j] ≤ Need[i,j]便转向步骤(2)。否则认为出错,因为它所需要的资源数已超过它所真正需要的最大值。
  (2) 如果 Requesti[j] ≤ Available[j],便转向步骤(3);否则,表示尚无足够资源,Pi须等待。
  (3) 系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值
    Available[j] = Available[j] - Requesti[j];
    Allocation[i,j] = Allocation[i,j] + Requesti[j];
    Need[i,j] = Need[i,j] - Requesti[j];
(4) 系统执行安全性算法,检查此次资源分配后系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
安全状态判别算法:
(1)设置 Finish=(false,…,false) work=Available
(2)循环查找满足下列条件的进程 pi //最多循环 n 次 Finish[i]=false 且 Needi<=work
(3)若找到则 Finish[i]=true;work=work+Alloci; 转(2)
(4)若 Finish=(true,…,true) 则安全,否则不安全。

三、数据结构及算法设计

(1)设计:数据结构
系统可用(剩余)资源:int available[n]
进程的最大需求:int maxRequest[m][n]
进程已经占有(分配)资源: int allocation[m][n]
进程还需要资源int need[m][n]
是否安全:bool Finish[m]
安全序列号:int safeSeries[m]
进程请求资源量int request[n]
(2)算法设计
显示当前状态

void showInfo()
{cout << "当前系统各类资源剩余:";for (int j = 0; j < n; j++){cout << available[j] << " ";}cout << endl;cout << "当前系统资源情况:" << endl;cout << "进程号" << "\t" << "对资源的总需求" << "          " << "已分配的资源" << "         " << "还需要的资源" << endl;for (int i = 0; i < m; i++){cout << "P" << i + 1 << "          ";for (int j = 0; j < n; j++){cout << maxRequest[i][j] << "  ";}cout << "\t\t";for (int j = 0; j < n; j++){cout << allocation[i][j] << "  ";}cout << "\t\t";for (int j = 0; j < n; j++){cout << need[i][j] << "  ";}cout << endl;}
}

安全检查

bool isSafe()//安全检查
{//int nFinish = 0;int safeIndex = 0;int allFinish = 0;int work[n] = { 0 };int r = 0;int temp = 0;int pNum = 0;//预分配为了保护available[]for (int i = 0; i < n; i++){work[i] = available[i];}//把未完成进程置为falsefor (int i = 0; i < m; i++){bool result = isAllZero(i);if (result == true){Finish[i] = true;allFinish++;}else{Finish[i] = false;}}//预分配开始while (allFinish != m){num = 0;for (int i = 0; i < n; i++){if (need[r][i] <= work[i] && Finish[r] == false){num++;}}if (num == n){for (int i = 0; i < n; i++){work[i] = work[i] + allocation[r][i];}allFinish++;SafeInfo(work, r);safeSeries[safeIndex] = r;safeIndex++;Finish[r] = true;}r++;//该式必须在此处	if (r >= m){r = r % m;if (temp == allFinish){break;}temp = allFinish;}pNum = allFinish;}//判断系统是否安全for (int i = 0; i < m; i++){if (Finish[i] == false){cout << endl;cout << "当前系统不安全" << endl;return false;}}//打印安全序列cout << endl;cout << "当前系统安全!" << "安全序列为:";for (int i = 0; i < m; i++){bool result = isAllZero(i);if (result == true){pNum--;}}for (int i = 0; i < pNum; i++){	cout << safeSeries[i] + 1 << " ";}return true;
}

判断一个进程的资源是否全为零

bool isAllZero(int kang)
{num = 0;for (int i = 0; i < n; i++){if (need[kang][i] == 0){num++;}}if (num == n){		return true;	}else{	return false;	}
}

四、程序运行情况

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

五、遇到的困难及解决办法、实习心得或良好建议

遇到的困难:安全判别算法中当第一次将finish数组修改完后,如果数组中都为true则很好判断该系统安全,但不能因为其中仍存在false而判断该系统不安全。
解决办法:当遍历一轮都没有找到一个可以安全执行的进程,则可说明该系统不安全。
记录 Finish[i] = true 的次数,同时把这个次数再使用另一个变量存放起来,然后在判断语句当中判断当寻找一轮下来,该值未发生改变,说明已经找不到安全的进程了,即可跳出循环。
实习心得:加深了对银行家算法的理解。

这篇关于操作系统原理银行家算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808519

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、