【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测

本文主要是介绍【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 数据读取及预处理
  • 2 GARCH模型拟合
  • 3 模型预测
  • 4 VAR、ES风险度量

该篇文章主要展示了应用一个带有标准学生t分布新息的GARCH(1,1)模型,对数据进行拟合并且预测风险损失,同时进行了风险价值VaR和局部均值ES的度量,附完整代码及分析。

1 数据读取及预处理

  运行程序:

da=read.table("F:\\ch7data\\d-ibm-0110.txt",header=T)
xt=-log(da$return+1)   # calculate negative log returns.library(fGarch)

2 GARCH模型拟合

  此处为作演示,拟合GARCH(1,1)模型。

  运行程序:

library(fGarch)
m2=garchFit(~garch(1,1),data=xt,trace=F,cond.dist="std")
m2

  运行结果:

## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = xt, cond.dist = "std", 
##     trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x0000000018857168>
##  [data = xt]
## 
## Conditional Distribution:
##  std 
## 
## Coefficient(s):
##          mu        omega       alpha1        beta1        shape  
## -4.1127e-04   1.9223e-06   6.4480e-02   9.2863e-01   5.7513e+00  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu     -4.113e-04   2.254e-04   -1.824  0.06811 .  
## omega   1.922e-06   7.417e-07    2.592  0.00954 ** 
## alpha1  6.448e-02   1.323e-02    4.874 1.09e-06 ***
## beta1   9.286e-01   1.407e-02   65.993  < 2e-16 ***
## shape   5.751e+00   6.080e-01    9.459  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  7218.69    normalized:  2.870254 

3 模型预测

  此处预测未来三期情况。

  运行程序:

predict(m2,3)

  运行结果:

##    meanForecast   meanError standardDeviation
## 1 -0.0004112737 0.008100874       0.008100874
## 2 -0.0004112737 0.008191121       0.008191121
## 3 -0.0004112737 0.008279774       0.008279774

4 VAR、ES风险度量

  运行程序:

source("F:\\ch7data\\RMeasure.R")
m22=RMeasure(-.0004113,.0081009,cond.dist="std",df=5.751)

  运行结果:

## 
##  Risk Measures for selected probabilities: 
##        prob        VaR         ES
## [1,] 0.9500 0.01240096 0.01756588
## [2,] 0.9900 0.02045082 0.02653004
## [3,] 0.9990 0.03456563 0.04298998
## [4,] 0.9999 0.05421689 0.06640880

  根据结果得出拟合的模型为:

x t = − 0.0004113 + a t ; a t = σ t ϵ t ; ϵ t ∼ N ( 0 , 1 ) x_t=-0.0004113+a_t;a_t=\sigma _t \epsilon_t;\epsilon_t \sim N(0,1) xt=0.0004113+at;at=σtϵt;ϵtN(0,1)

σ t 2 = 1.922 × 1 0 t − 6 + 0.0645 × a t − 1 2 + 0.9286 σ t − 1 2 \sigma _t^2=1.922×10^{-6}_t+0.0645×a_{t-1}^2+0.9286 \sigma_{t-1}^2 σt2=1.922×10t6+0.0645×at12+0.9286σt12

  所有的系数估计在5%的水平下都是显著的。拟合的自由度为5.751,同时,模型检验统计量确认了模型的充分性。在预测下一个时刻时,均值模型和波动率模型的超前一步预测为-0.0004113和0.00801,相应的,我们有:

V a r 0.95 = 0.01514 ; E S 0.95 = 0.02185 Var_{0.95}=0.01514;ES_{0.95}=0.02185 Var0.95=0.01514;ES0.95=0.02185

V a r 0.95 = 0.02542 ; E S 0.95 = 0.03295 Var_{0.95}=0.02542;ES_{0.95}=0.03295 Var0.95=0.02542;ES0.95=0.03295

  因此,应用学生t分布的新息,该金融头寸的风险度量为:

V a r 0.95 = 15450 ; E S 0.95 = 21850 Var_{0.95}=15450;ES_{0.95}=21850 Var0.95=15450;ES0.95=21850

  结合 【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量可以看出,具有厚尾的新息会给出更高的风险度量,说明正态假设下的VaR倾向于低估真实的风险。

这篇关于【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808364

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹