NASA数据集——2017年美国阿拉斯加以及加拿大北部二氧化碳探测仪监测的大气后向散射系数剖面图数据集

本文主要是介绍NASA数据集——2017年美国阿拉斯加以及加拿大北部二氧化碳探测仪监测的大气后向散射系数剖面图数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来自二氧化碳探测仪的大气后向散射系数剖面图,2017年

本数据集提供了2017-07-20至2017-08-08期间在美国阿拉斯加以及加拿大育空地区和西北地区上空进行的二氧化碳夜间、白天和季节排放主动传感(ASCENDS)部署期间收集的大气后向散射系数剖面图。这些剖面由一架 DC-8 飞机上搭载的二氧化碳探测仪激光雷达仪器测量。机载二氧化碳探测仪是一种脉冲式多波长集成路径差分吸收激光雷达,可估算从飞机到散射表面的天底路径上的柱均干空气二氧化碳混合比(XCO2)。除 XCO2 外,激光雷达接收器还记录了激光脉冲在大气中传播时的时间分辨大气反向散射信号强度。激光雷达原始数据被转换为大气后向散射截面积和双向大气传输,也称为衰减后向散射剖面。这些 ASCENDS 飞行与 2017 年北极-北方脆弱性实验(ABoVE)活动协调进行,并以 ICARTT 格式提供。Mapmost login

本数据集提供了2017-07-20至2017-08-08期间在美国阿拉斯加以及加拿大育空地区和西北地区上空进行的二氧化碳夜间、白天和季节排放主动传感(ASCENDS)部署期间收集的大气后向散射系数剖面图。这些剖面由一架 DC-8 飞机上搭载的二氧化碳探测仪激光雷达仪器测量。机载二氧化碳探测仪是一种脉冲式多波长集成路径差分吸收激光雷达,可估算从飞机到散射表面的天底路径上的柱均干空气二氧化碳混合比(XCO2)。除 XCO2 外,激光雷达接收器还记录了激光脉冲在大气中传播时的时间分辨大气反向散射信号强度。激光雷达原始数据被转换为大气后向散射截面积和双向大气传输,也称为衰减后向散射剖面。这些 ASCENDS 飞行与 2017 年北极-北方脆弱性实验(ABoVE)活动协调进行,并以 ICARTT 格式提供。
本数据集中包含 16 个 ICARTT 格式(*.ict)的数据文件。此外还包括 Matlab 脚本,用于对 2017 年 ABoVE 机载活动期间二氧化碳激光探测仪测量的大气后向散射剖面进行数据处理。

北极-北方脆弱性实验(ABoVE)是美国国家航空航天局(NASA)陆地生态计划的一项实地活动,于2016年至2021年期间在阿拉斯加和加拿大西部进行。ABoVE 的研究将基于实地的过程级研究与机载和卫星传感器获得的地理空间数据产品联系起来,为提高分析和建模能力奠定了基础,而分析和建模能力是了解和预测生态系统反应及社会影响所必需的。

Platforms

NASA DC-8

Instruments

BACKSCATTER LIDAR

Data Formats

Distribution: ICARTT

Temporal Extent

2017-07-20 to 2017-08-08

Data Centers

ORNL_DAAC

Spatial Extent

Bounding Box: (71.27°, -98.15°), (34.59°, -165.68°)

数据属性

VariableUnitsDescription
Start_UTCsSeconds since midnight UTC on flight date
Day_Of_YeardDay of year, beginning January 1
LatitudedegreesLatitude
LongitudedegreesLongitude
MSL_GPS_AltitudemSensor height above mean sea level
HAE_GPS_AltitudemSensor height above WGS84 ellipsoid
Pressure_AltitudeftAircraft altitude from air pressure sensor
Radar_AltitudeftAircraft altitude from radar
Ground_Speedm s-1Aircraft ground speed
True_Air_SpeedktsAir speed in knots
Indicated_Air_SpeedktsAir speed in knots
Mach_NumbermachAir speed in mach number
Vertical_Speedm s-1Vertical speed
True_HeadingdegreesAircraft heading, 0-360 degrees, clockwise from +y
Track_Angledegrees Aircraft track, 0-360 degrees, clockwise from +y
Drift_Angledegrees Aircraft drift, +/-180 degrees, clockwise from +y
Pitch_Angledegrees Aircraft pitch, +/-180 degrees, up+
Roll_Angledegrees Aircraft roll, +/-180 degrees, right+
Static_Air_Tempdegrees CelsiusAir temperature
Potential_Tempdegrees KelvinAir temperature
Dew_Pointdegrees CelsiusDew point temperature
Total_Air_Tempdegrees CelsiusAir temperature
IR_Surf_Tempdegrees CelsiusSurface temperature
Static_PressurembAir pressure
Cabin_PressurembAir pressure
Wind_Speedm s-1 Wind speed, limited to where Roll_Angle <= 5 degrees
Wind_DirectiondegreesWind direction, 0-360 degrees, clockwise from +y
Solar_Zenith_AngledegreesSolar zenith angle
Aircraft_Sun_ElevationdegreesAircraft sun elevation angle
Sun_AzimuthdegreesSun azimuth angle
Aircraft_Sun_AzimuthdegreesAircraft-sun azimuth angle
Mixing_Ratiog kg-1Atmospheric mixing ratio
Part_Press_Water_VapormbPartial pressure of water vapor
Sat_Vapor_Press_H2OmbSaturated vapor pressure over liquid water
Sat_Vapor_Press_IcembSaturated vapor pressure over ice
Relative_Humiditypercent

Relative humidity

代码:

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ABoVE_ASCENDS_Backscatter_2051
",cloud_hosted=True,bounding_box=(-165.68, 34.59, -98.15, 71.27),temporal=("2017-07-20", "2017-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

下图显示监测的地面轨迹的地图,以及概述每次飞行的表格。表格中的颜色与地面轨迹中显示的颜色一致。 

 

数据下载链接

https://daac.ornl.gov/above/ABoVE_ASCENDS_Backscatter/

这篇关于NASA数据集——2017年美国阿拉斯加以及加拿大北部二氧化碳探测仪监测的大气后向散射系数剖面图数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808114

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本