【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现

2024-03-14 08:36

本文主要是介绍【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.代码实现
    • 4.参考文献


1.背景

2017年,Zhao等人受到蝠鲼自然捕食行为启发,提出了蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)。

2.算法原理

2.1算法思想

MRFO模拟了蝠鲼在海洋中的觅食过程,提出了三种捕食策略链式觅食-螺旋觅食-翻滚觅食

2.2算法过程

链式觅食
蝠鲼可以观察到浮游生物的位置并朝它游去,在一个位置上浮游生物的浓度越高,位置越好(适应度函数)。蝠鲼排成一列,形成觅食链,除了第一个个体外,其他个体不仅朝着食物游去,还朝着它前面的个体游去。在每次迭代中,每个个体都会根据迄今为止找到的最佳解决方案和它前面的解决方案进行更新。
在这里插入图片描述

x i d ( t + 1 ) = { x i d ( t ) + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x i d ( t ) + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_i^d(t)+r\cdot(x_{best}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_i^d(t)+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\ldots,N\end{cases} xid(t+1)={xid(t)+r(xbestd(t)xid(t))+α(xbestd(t)xid(t))xid(t)+r(xi1d(t)xid(t))+α(xbestd(t)xid(t))i=1i=2,,N
a a a为控制因子,表述为:
α = 2 ⋅ r ⋅ ∣ l o g ( r ) ∣ \alpha=2\cdot r\cdot\sqrt{|log(r)|} α=2rlog(r)
螺旋觅食
当一群蝠鲼在深水中发现一片浮游生物时,它们会组成一条长长的觅食链,并以螺旋形式向食物游去。(类似于鲸鱼算法(WOA)捕食策略)
在这里插入图片描述

t / T > r a n d 时 t/T>rand时 t/T>rand,此时进行全局探索:
x i d ( t + 1 ) = { x b e s t d + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x b e s t d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_{best}^d+r\cdot(x_{best}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_{best}^d+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\dots,N\end{cases} xid(t+1)={xbestd+r(xbestd(t)xid(t))+β(xbestd(t)xid(t))xbestd+r(xi1d(t)xid(t))+β(xbestd(t)xid(t))i=1i=2,,N
t / T ≥ r a n d 时 t/T \ge rand时 t/Trand,此时进行局部探索:
x i d ( t + 1 ) = { x r a n d d + r ⋅ ( x r a n d d − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 1 x r a n d d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 2 , … , N \left.x_{i}^{d}(t+1)=\left\{\begin{array}{ll}{{x_{rand}^{d}+r\cdot(x_{rand}^{d}-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=1}\\{{x_{rand}^{d}+r\cdot(x_{i-1}^{d}(t)-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=2,\ldots,N}\end{array}\right.\right. xid(t+1)={xrandd+r(xranddxid(t))+β(xranddxid(t))xrandd+r(xi1d(t)xid(t))+β(xranddxid(t))i=1i=2,,N
β \beta β为控制因子,表述为:
β = 2 e r 1 T − t + 1 T ⋅ sin ⁡ ( 2 π r 1 ) \beta=2e^{r_1\frac{T-t+1}T}\cdot\sin(2\pi r_1) β=2er1TTt+1sin(2πr1)
翻滚觅食
在这种行为中,食物的位置被视为一个中心点。每个个体倾向于在中心点周围来回游动,并翻滚到一个新的位置。
在这里插入图片描述

x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 2 ⋅ x b e s t d − r 3 ⋅ x i d ( t ) ) , i = 1 , … , N x_i^d(t+1)=x_i^d(t)+S\cdot(r_2\cdot x_{best}^d-r_3\cdot x_i^d(t)),i=1,\ldots,N xid(t+1)=xid(t)+S(r2xbestdr3xid(t)),i=1,,N
伪代码
在这里插入图片描述

3.代码实现

% 蝠鲼觅食优化算法
function [Best_pos, Best_fitness, Iter_curve, History_pos, History_best] = MRFO(pop, maxIter,lb,ub,dim,fobj)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% 初始化种群
PopPos = zeros(pop, dim);
for i = 1:dimPopPos(:,i) = lb(i) + (ub(i) - lb(i)) * rand(pop, 1);
end
%% 计算适应度
PopFit = zeros(1, pop);
for i=1:popPopFit(i)=fobj(PopPos(i,:));
end
%% 记录
[MinFitness, MinIdx] = sort(PopFit);
Best_pos = PopPos(MinIdx(1),:);
Best_fitness = MinFitness(1);
%% 迭代
for It = 1:maxIter  Coef = It / maxIter;     if rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef > rand                                                      newPopPos(1,:)=Best_pos+rand(1,dim).*(Best_pos-PopPos(1,:))+Beta*(Best_pos-PopPos(1,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(1,:)=IndivRand+rand(1,dim).*(IndivRand-PopPos(1,:))+Beta*(IndivRand-PopPos(1,:)); %Equation (7)         end              else Alpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(1,:)=PopPos(1,:)+rand(1,dim).*(Best_pos-PopPos(1,:))+Alpha.*(Best_pos-PopPos(1,:)); %Equation (1)endfor i=2:popif rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef>rand                                                      newPopPos(i,:)=Best_pos+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(Best_pos-PopPos(i,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(i,:)=IndivRand+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(IndivRand-PopPos(i,:));  %Equation (7)       end              elseAlpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(i,:)=PopPos(i,:)+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Alpha.*(Best_pos-PopPos(i,:)); %Equation (1)end         endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendS=2;for i=1:pop           newPopPos(i,:)=PopPos(i,:)+S*(rand*Best_pos-rand*PopPos(i,:)); %Equation (8)endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendfor i=1:popif PopFit(i)<Best_fitnessBest_fitness=PopFit(i);Best_pos=PopPos(i,:);            endendIter_curve(It)=Best_fitness;History_pos{It} = PopPos;History_best{It} = Best_pos;
end
end

在这里插入图片描述

4.参考文献

[1] Zhao W, Zhang Z, Wang L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300.

这篇关于【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807827

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco