MaskRCNN训练自己的数据集 小白篇

2024-03-14 06:10

本文主要是介绍MaskRCNN训练自己的数据集 小白篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文旨在帮助对代码无从下手的小白训练自己数据集,分享一些自己遇到的坑&解决方案,以及一些方便大家制作数据集的代码。
附成品代码:download.csdn.net/download/weixin_43758528/11965024

参考博客见下文链接。

博主电脑配置:win10 + GTX1050Ti + cuda9.0 + cudnn7 + tensorflow-gpu1.5.0(配置见下文链接)
博主使用jupyter notebook对直接对源码进行更改,方便大家修改代码。

预先准备

maskrcnn配置教程:https://blog.csdn.net/chenmoran0928/article/details/79999073
注:win10若遇到cuda9安装不上的情况(显示NVIDIA驱动程序与此Windows版本不兼容),请将win10版本升级至1803及以上,并在NVIDIA官网https://www.geforce.cn/drivers安装自己显卡对应的最新驱动。

mask rcnn训练自己的数据集:https://blog.csdn.net/qq_29462849/article/details/81037343
注:该博客有些地方一带而过,像博主一样的小白可能会有诸多疑问。接下来我列举一些我曾经遇到的问题。

正文

数据集制作

labelme制作数据集方法:https://blog.csdn.net/u012746060/article/details/81871733
注:当你成功生成 .json 文件后想进行转换,可能会发现上文给出的转换代码不能使用(报错显示没有labelme_json_to_dataset.exe文件)。如果你遇到了这个问题,可以试试如下代码:

import os
path = 'D:/label'  # path为json文件存放的路径
json_file = os.listdir(path)
os.system("activate labelme")
for file in json_file: os.system("labelme_json_to_dataset.exe %s"%(path + '/' + file))

博主用以上代码成功实现了转换。

数据集格式:
在这里插入图片描述
json文件夹下存放labelme生成的json文件
pic文件夹下存放原图
labelme_json文件夹下存放json文件转换生成的文件夹
cv2_mask文件夹下存放mask文件

何为mask文件? 打开json转换而来的文件夹,里面的label.png文件即为mask文件。
新版labelme能看到标注的mask(类似下图的红色区域),则此文件可直接使用(反之若图片全黑,则必须利用代码对图片进行修改)。
在这里插入图片描述
mask文件需要重命名为原图的名字,如test.jpg/png对应的mask文件需要修改为test.png。
人工操作比较复杂,此处给出博主使用的代码(需要先完成除cv2_mask外所有步骤):

#! /usr/bin/env python
# coding=utf-8
import os
import shutil
import time
import sys
import importlib
importlib.reload(sys)def copy_and_rename(fpath_input, fpath_output):for file in os.listdir(fpath_input):for inner in os.listdir(fpath_input+file+'/'):print(inner)if os.path.splitext(inner)[0] == "label":former = os.path.join(fpath_input, file)oldname = os.path.join(former, inner)print(oldname)newname_1 = os.path.join(fpath_output,file.split('_')[0] + ".png")#os.rename(oldname, newname)shutil.copyfile(oldname, newname_1)if __name__ == '__main__':print('start ...')t1 = time.time() * 1000#time.sleep(1) #1sfpath_input = ".../train_data/labelme_json/" #...为train_data文件夹地址,按自己的地址修改fpath_output = ".../train_data/cv2_mask/"copy_and_rename(fpath_input, fpath_output)t2 = time.time() * 1000print('take time:' + str(t2 - t1) + 'ms')print('end.')

运行后即可得到对应的文件。
(若报错split(’_’)[0],则先删掉split命令运行一次,再恢复原代码运行一次,就不报错了。玄学)

代码修改

博主使用sample中的train_shapes.ipynb文件进行修改。(参考https://blog.csdn.net/l297969586/article/details/79140840/)

1、修改ROOT_DIR
在这里插入图片描述
修改为MaskRCNN根目录(以防更改后的train_shapes.ipynb被移动到其他地址)

补充: from PIL import Image

2、修改配置
在这里插入图片描述
将NUM_CLASSES修改为1+N(背景+标签数)。如你的数据集中标注了2物体,则N=2 。
修改IMAGE_MIN_DIM为你的数据集图片中最小维度
修改IMAGE_MAX_DIM为最大维度

3、修改训练代码:参考https://blog.csdn.net/l297969586/article/details/79140840/
(1)删除dataset中前两个模块的所有代码(仅保留Load and display random samples)
(2)将参考文章中”△4、重新写一个训练类 “内所有代码复制下来
(3)根据自己标签的名称和数量,修改函数load_shapes中的 Add_classes
(4)将函数load_shapes中,图中所示内容替换为以下代码
在这里插入图片描述

			filestr = imglist[i].split(".")[0]mask_path = mask_floder + "/" + filestr + ".png"yaml_path=dataset_root_path+"/labelme_json/"+filestr+"_json/info.yaml"

(5)根据自己标签的名称和数量,修改函数load_mask中 if labels[i].find("…")!=-1: labels_form.append("…")

4、代码主体修改:参考文章同上
(1)将参考文章中”4、代码主体修改“内所有代码复制下来
(2)将各folder地址改为对应地址(如dataset_root_path 改为 dataset_root_path = os.path.join(ROOT_DIR, “train_data”)),同理更改img_folder和mask_folder
(3)修改width和height为自己图片的宽和高
(4)修改函数load_shapes中的宽和高与上一步一致
在这里插入图片描述
5、开始测试代码吧!

常见报错

1、class_ids = class_ids[_idx] IndexError: boolean index did not match indexed array along dimension 0; dimension is 0 but corresponding boolean dimension is 128
出现类似此错误的原因有很多,所以请依次检查以下内容:
(1)mask文件是否正确。
(2)配置中NUM_CLASSES是否修改。
(3)上文“代码修改”第三条中(3)(5)是否正确修改。

2、缺少pillow
安装PIL即可

3、找不到指定模块…xx/Shapely
pip install shapely

参考文章:
[1]: https://blog.csdn.net/chenmoran0928/article/details/79999073
[2]: https://blog.csdn.net/qq_29462849/article/details/81037343
[3]: https://blog.csdn.net/u012746060/article/details/81871733
[4]: https://blog.csdn.net/l297969586/article/details/79140840/
[5]: https://blog.csdn.net/u012746060/article/details/82143285

这篇关于MaskRCNN训练自己的数据集 小白篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807451

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒