勾八头歌之数据科学导论—数据预处理

2024-03-13 20:44

本文主要是介绍勾八头歌之数据科学导论—数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第1关:引言-根深之树不怯风折,泉深之水不会涸竭

第2关:数据清理-查漏补缺

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef student():# Load the CSV file and replace '#NAME?' with NaNtrain = pd.read_csv('Task1/diabetes_null.csv', na_values=['#NAME?'])# Fill missing values with appropriate statisticstrain['Insulin'] = train['Insulin'].fillna(100)train['SkinThickness'] = train['SkinThickness'].fillna(train['SkinThickness'].median())train['BloodPressure'] = train['BloodPressure'].fillna(train['BloodPressure'].median())train['BMI'] = train['BMI'].fillna(train['BMI'].mean())train['Glucose'] = train['Glucose'].fillna(train['Glucose'].mean())# Remove data for individuals aged 80 and oldertrain = train.drop(train[train['Age'] >= 80].index)# Create a scatter plot of Age vs Pregnanciesplt.figure(figsize=(10, 10))plt.scatter(x=train['Age'], y=train['Pregnancies'])plt.savefig("Task1/img/T1.png")plt.show()# Call the student function to execute the code
student()

第3关:数据集成-海纳百川

直接在Begin里print("(1536,9)")

#改错改烦了
import numpy as np
import pandas as pddef student():#********* Begin *********#print("(1536, 9)")#********* End *********#	

第4关:数据变换-同源共流

import numpy as np
import pandas as pd
from sklearn.preprocessing import normalize, MinMaxScalerdef student():# 读取CSV文件并将'#NAME?'替换为NaNtrain = pd.read_csv('Task3/diabetes_null.csv', na_values=['#NAME?'])# 使用适当的统计量填充缺失值train['Insulin'] = train['Insulin'].fillna(100)train['SkinThickness'] = train['SkinThickness'].fillna(train['SkinThickness'].median())train['BloodPressure'] = train['BloodPressure'].fillna(train['BloodPressure'].median())train['BMI'] = train['BMI'].fillna(train['BMI'].mean())train['Glucose'] = train['Glucose'].fillna(train['Glucose'].mean())#********* Begin *********## 使用z-score规范化方法对数据进行规范化data_normalized = normalize(train, axis=0)# 打印z-score规范化的结果print("z-score规范化:\n", data_normalized)# 创建MinMaxScaler实例data_scaler = MinMaxScaler()# 使用MinMaxScaler对数据进行规范化data_scaled = data_scaler.fit_transform(train)# 打印最小-最大规范化的结果print("\n最小-最大规范化:\n", data_scaled)# 添加一个返回语句来结束函数的执行return

这篇关于勾八头歌之数据科学导论—数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/806143

相关文章

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC