【位运算】【脑筋急转弯】2749. 得到整数零需要执行的最少操作数

本文主要是介绍【位运算】【脑筋急转弯】2749. 得到整数零需要执行的最少操作数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

2749. 得到整数零需要执行的最少操作数

给你两个整数:num1 和 num2 。
在一步操作中,你需要从范围 [0, 60] 中选出一个整数 i ,并从 num1 减去 2i + num2 。
请你计算,要想使 num1 等于 0 需要执行的最少操作数,并以整数形式返回。
如果无法使 num1 等于 0 ,返回 -1 。
示例 1:
输入:num1 = 3, num2 = -2
输出:3
解释:可以执行下述步骤使 3 等于 0 :

  • 选择 i = 2 ,并从 3 减去 22 + (-2) ,num1 = 3 - (4 + (-2)) = 1 。
  • 选择 i = 2 ,并从 1 减去 22 + (-2) ,num1 = 1 - (4 + (-2)) = -1 。
  • 选择 i = 0 ,并从 -1 减去 20 + (-2) ,num1 = (-1) - (1 + (-2)) = 0 。
    可以证明 3 是需要执行的最少操作数。
    示例 2:
    输入:num1 = 5, num2 = 7
    输出:-1
    解释:可以证明,执行操作无法使 5 等于 0 。
    提示:
    1 <= num1 <= 109
    -109 <= num2 <= 109

脑筋急转弯

特殊情况

num2为0,2x 能通过y次操作变成0,求y的取值范围。
x == 1时,只能i 取0,故y ∈ \in [1,1]。
x == 2时,21,y == 1 ; 20+20,y==2,故y ∈ \in [1,2]。
x == 4 时,y ∈ \in [1,4] , 22 , 2 1 + 21 , 21+20+20 , 20+20+20+20
猜测:2m 可以通过[1,2m]操作变成0。
m = 0,只能取1。
证明: m >=0 , 2m的操作次数f(m)范围是[1,2m],则2m+1的操作次数范围是[1,2m+1]。
f(m+1)=f(m)+f(m) ,故f(m+1) ∈ \in [2,2*2m]即[2,2m+1]。
直接减2m+1,操作次数就是1。故: f(m+1) ∈ \in [1,2m+1]。
任意数都可以表示为:2m1+2m2 ⋯ \cdots 2mo
当num2为零时:num1的操作次数的合法范围是:[num1中1的位数,num1]。

分析

特殊情况无需排除:num1为0,结果为0。
令操作y1次后,还需要减去 num3 = num1 - num2*y1。如果y1 ∈ \in [num3中1的个数,num3] 则可以让结果为0。
num3必须大于等于0,这条无需额外判断,因为y1 必须小于等于num3。如果num3为0,这条不符合。

当y1等于64,一定大于num3中1的个数。如果y1 <= num3,则结果至少是64。如果此时无解,说明:64 > num3。
如果num2 >= 0,num不会变大,则num3永远不会变大,即永远不会大于y1。
如果num2 < 0,则num1取最小值0,num2取最大值-1,则nums3 = 64,和小于64矛盾。

当y1 <=64,则num3的取值范围:109*64 ,最多近40个二进制一。故只需要枚举y1 ∈ \in [0,40]。

代码

核心代码

class CBitCounts
{
public:CBitCounts(int iMaskCount){for (int i = 0; i < iMaskCount; i++){m_vCnt.emplace_back(bitcount(i));}}template<class T>static int bitcount(T x) {int countx = 0;while (x) {countx++;x &= (x - 1);}return countx;}vector<int> m_vCnt;
};
class Solution {
public:int makeTheIntegerZero(int num1, int num2) {for (long long i = 0; i < 61; i++){const long long llNeed = num1 - num2 * i;const int iOneCnt = CBitCounts::bitcount((unsigned long long)llNeed);if ( (i  >= iOneCnt)&&(i <= llNeed)){return i;}}return -1;}
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int num1, num2;{Solution sln;num1 =3 ,num2 = -2 ;auto res = sln.makeTheIntegerZero(num1, num2);Assert(3, res);}{Solution sln;num1 = 5, num2 = 7;auto res = sln.makeTheIntegerZero(num1, num2);Assert(-1, res);}
}

2023年6月

class Solution {
public:
int makeTheIntegerZero(int num1, int num2) {
if (0 == num1)
{
return 0;
}
unsigned long long n = num1;
for (int i = 1; i <= 60; i++)
{
n -= num2;
if (n >= 0 && Is(n,i))
{
return i;
}
}
return -1;
}
bool Is(unsigned long long n, int iCi)
{
if (n >= ((long long)1 << 61))
{
return false;
}
long long iCanSub = bitcount(n);
if (iCanSub > iCi)
{
return false;
}
if (bitcount(n) == iCi)
{
return true;
}
for (int i = 1; i <= 60; i++)
{
if (n & (1LL << i))
{
iCanSub += (1LL << i) - 1;
}
}
return iCanSub >= iCi;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【位运算】【脑筋急转弯】2749. 得到整数零需要执行的最少操作数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804137

相关文章

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

MySQL中SQL的执行顺序详解

《MySQL中SQL的执行顺序详解》:本文主要介绍MySQL中SQL的执行顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql中SQL的执行顺序SQL执行顺序MySQL的执行顺序SELECT语句定义SELECT语句执行顺序总结MySQL中SQL的执行顺序

使用easy connect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题

《使用easyconnect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题》:本文主要介绍使用easyconnect之后,maven无法... 目录使用easGWowCy connect之后,maven无法使用,原来需要配置-DJava.net.pr

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

grom设置全局日志实现执行并打印sql语句

《grom设置全局日志实现执行并打印sql语句》本文主要介绍了grom设置全局日志实现执行并打印sql语句,包括设置日志级别、实现自定义Logger接口以及如何使用GORM的默认logger,通过这些... 目录gorm中的自定义日志gorm中日志的其他操作日志级别Debug自定义 Loggergorm中的

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程