【深度学习笔记】7_7 AdaDelta算法

2024-03-12 21:36

本文主要是介绍【深度学习笔记】7_7 AdaDelta算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

7.7 AdaDelta算法

除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,AdaDelta算法没有学习率这一超参数

Adadelta是一种自适应学习率的方法,用于神经网络的训练过程中。 它的基本思想是避免使用手动调整学习率的方法来控制训练过程,而是自动调整学习率,使得训练过程更加顺畅。

7.7.1 算法

AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度 g t \boldsymbol{g}_t gt按元素平方的指数加权移动平均变量 s t \boldsymbol{s}_t st。在时间步0,它的所有元素被初始化为0。给定超参数 0 ≤ ρ < 1 0 \leq \rho < 1 0ρ<1(对应RMSProp算法中的 γ \gamma γ),在时间步 t > 0 t>0 t>0,同RMSProp算法一样计算

s t ← ρ s t − 1 + ( 1 − ρ ) g t ⊙ g t . \boldsymbol{s}_t \leftarrow \rho \boldsymbol{s}_{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. stρst1+(1ρ)gtgt.

与RMSProp算法不同的是,AdaDelta算法还维护一个额外的状态变量 Δ x t \Delta\boldsymbol{x}_t Δxt,其元素同样在时间步0时被初始化为0。我们使用 Δ x t − 1 \Delta\boldsymbol{x}_{t-1} Δxt1来计算自变量的变化量:

g t ′ ← Δ x t − 1 + ϵ s t + ϵ ⊙ g t , \boldsymbol{g}_t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}_{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, gtst+ϵΔxt1+ϵ gt,

其中 ϵ \epsilon ϵ是为了维持数值稳定性而添加的常数,如 1 0 − 5 10^{-5} 105。接着更新自变量:

x t ← x t − 1 − g t ′ . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}'_t. xtxt1gt.

最后,我们使用 Δ x t \Delta\boldsymbol{x}_t Δxt来记录自变量变化量 g t ′ \boldsymbol{g}'_t gt按元素平方的指数加权移动平均:

Δ x t ← ρ Δ x t − 1 + ( 1 − ρ ) g t ′ ⊙ g t ′ . \Delta\boldsymbol{x}_t \leftarrow \rho \Delta\boldsymbol{x}_{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. ΔxtρΔxt1+(1ρ)gtgt.

可以看到,如不考虑 ϵ \epsilon ϵ的影响,AdaDelta算法跟RMSProp算法的不同之处在于使用 Δ x t − 1 \sqrt{\Delta\boldsymbol{x}_{t-1}} Δxt1 来替代学习率 η \eta η

7.7.2 从零开始实现

AdaDelta算法需要对每个自变量维护两个状态变量,即 s t \boldsymbol{s}_t st Δ x t \Delta\boldsymbol{x}_t Δxt。我们按AdaDelta算法中的公式实现该算法。

%matplotlib inline
import torch
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2lfeatures, labels = d2l.get_data_ch7()def init_adadelta_states():s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)delta_w, delta_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)return ((s_w, delta_w), (s_b, delta_b))def adadelta(params, states, hyperparams):rho, eps = hyperparams['rho'], 1e-5for p, (s, delta) in zip(params, states):s[:] = rho * s + (1 - rho) * (p.grad.data**2)g =  p.grad.data * torch.sqrt((delta + eps) / (s + eps))p.data -= gdelta[:] = rho * delta + (1 - rho) * g * g

使用超参数 ρ = 0.9 \rho=0.9 ρ=0.9来训练模型。

d2l.train_ch7(adadelta, init_adadelta_states(), {'rho': 0.9}, features, labels)

输出:

loss: 0.243728, 0.062991 sec per epoch

在这里插入图片描述

7.7.3 简洁实现

通过名称为Adadelta的优化器方法,我们便可使用PyTorch提供的AdaDelta算法。它的超参数可以通过rho来指定。

d2l.train_pytorch_ch7(torch.optim.Adadelta, {'rho': 0.9}, features, labels)

输出:

loss: 0.242104, 0.047702 sec per epoch

在这里插入图片描述

小结

  • AdaDelta算法没有学习率超参数,它通过使用有关自变量更新量平方的指数加权移动平均的项来替代RMSProp算法中的学习率。

参考文献

[1] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.


注:除代码外本节与原书此节基本相同,原书传送门

这篇关于【深度学习笔记】7_7 AdaDelta算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802647

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen