NASA和IBM联合开发的 2022 年多时相土地分类数据集

2024-03-12 19:28

本文主要是介绍NASA和IBM联合开发的 2022 年多时相土地分类数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

美国国家航空航天局(NASA)和国际商业机器公司(IBM)合作,利用大规模卫星和遥感数据,包括大地遥感卫星和哨兵-2 号(HLS)数据,创建了地球观测人工智能基础模型。通过奉行开放式人工智能和开放式科学的原则,两家机构都在积极为促进知识共享和加快创新以应对重大环境挑战的全球使命做出贡献。通过Hugging Face的平台,他们简化了地理空间模型的训练和部署,使开放科学用户、初创企业和企业能够在watsonx等多云人工智能平台上使用这些模型。此外,Hugging Face 还能在社区内轻松共享模型系列(我们的团队称之为 Prithvi)的管道,促进全球合作和参与。有关 Prithvi 的更多详情,请参阅 IBM NASA 联合技术论文。

多时作物分类数据集

数据集摘要

本数据集包含 2022 年美国毗连地区不同土地覆被和作物类型类别的统一陆地卫星-圣天诺时空影像。目标标签来自美国农业部的作物数据层(CDL)。它的主要用途是训练分割地理空间机器学习模型。

数据集结构

TIFF 文件
每个 TIFF 文件覆盖 224 x 224 像素区域,空间分辨率为 30 米。每个输入卫星文件包含 18 个波段,其中包括三个时间步长叠加在一起的 6 个光谱波段。每个掩膜的 GeoTIFF 文件包含一个波段,每个像素包含目标类别。

Band Order

在每个输入的 GeoTIFF 中,以下波段在整个生长季节的三次观测中重复三次: 通道、名称、HLS S30 波段编号
1, Blue, B02
2, Green, B03
3, Red, B04
4, NIR, B8A
5, SW 1, B11
6, SW 2, B12

Masks are a single band with values:
0 : "No Data" 1 : "Natural Vegetation" 2 : "Forest" 3 : "Corn" 4 : "Soybeans" 5 : "Wetlands" 6 : "Developed/Barren" 7 : "Open Water" 8 : "Winter Wheat" 9 : "Alfalfa" 10 : "Fallow/Idle Cropland" 11 : "Cotton" 12 : "Sorghum" 13 : "Other"

训练数据

 

验证数据

数据分割

3 854 个瓦片被随机分成训练数据(80%)和验证数据(20%),相应的 ID 记录在 cvs 文件 train_data.txt 和 validation_data.txt 中。

数据集创建

查询和场景选择

首先,根据美国农业部 CDL 的样本定义了一组 5,000 个瓦片,以确保在整个美国有代表性。然后,对每个片段查询 2022 年 3 月至 9 月期间相应的 HLS S30 场景,并检索云量较少的场景。然后,在低云层场景中选择三个场景,以确保在季节早期、中期和末期各有一个场景。然后,使用双线性插值法将最终的三个场景重新投影到 CDL 的投影网格(EPSG:5070)上。


最后一步,将每个瓦片的三个场景剪切到瓦片的边界框内,并将 18 个光谱带堆叠在一起。此外,使用 HLS 数据集的 Fmask 层对每个瓦片进行质量控制。任何含有云层、云影、邻近云层或缺失值的芯片都会被丢弃。这样就得到了 3854 个瓦片。

数据集下载

您可以从该资源库下载 .tgz 格式的数据(需要安装Git Large File Sotrage)。相同版本的数据作为 AWS S3 上的对象托管在 Source Cooperative 上。

数据引用

@misc{hls-multi-temporal-crop-classification,author = {Cecil, Michael and Kordi, Fatemehand Li, Hanxi (Steve) and Khallaghi, Sam and Alemohammad, Hamed},doi    = {10.57967/hf/0955},month  = aug,title  = {{HLS Multi Temporal Crop Classification}},url    = {https://huggingface.co/ibm-nasa-geospatial/multi-temporal-crop-classification},year   = {2023}
}

 

网址推荐 

推荐两个网址一个是机器学习的另外一个是0代码地图应用创建

 Mapmost login

 前言 – 人工智能教程

这篇关于NASA和IBM联合开发的 2022 年多时相土地分类数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802331

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类