NetworkX与GraphScope的性能对比

2024-03-12 18:18

本文主要是介绍NetworkX与GraphScope的性能对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年来,全球大数据进入加速发展时期,数据量呈现指数级爆发式增长,而这些大量数据中不同个体间交互产生的数据以图的形式表现,如何高效地处理这些图数据成为了业界及其关心的问题。很过用普通关系数据无法跑出来的结果,用图数据进行关联分析会显得异常高效。

提到处理图数据,我们首先想到NetworkX,这是网络计算上常用的Python包,可提供灵活的图构建、分析功能。但是我们使用NetworkX跑大规模图数据时,不仅经常碰到内存不足的问题,而且分析速度很慢,究其原因,是NetworkX只支持单机运行。通过网上搜索,新发现了一个名为GraphScope的系统不仅号称兼容NetworkX的API,而且支持分布式部署运行,性能更优。针对GraphScope和NetworkX的处理能力,我们参考图计算中常用的测试框架LDBC,通过一组实验来对比下二者的性能。

一、实验介绍

为了比较两者的计算效率,先用阿里云拉起了配置为8核CPU,32GB内存的四台ECS,设计了三组比较实验,分别是NetworkX单机下的计算性能,GraphScope单机多worker的计算性能以及GraphScope分布式多机多worer的计算性能。

数据上,我们选取了SNAP开源的图数据集twitter,来自 LDBC数据集的datagen-7_5-fb,datagen-7_7-zf和datagen-8_0-fb作为实验数据,以下是数据集的基本信息:

· Twitter: 81,307个顶点,1,768,135条边

· Datagen-7_5-fb: 633,432个顶点,34,185,747条边,稠密图

· Datagen-7_7-zf: 13,180,508个顶点,32,791,267条边,稀疏图

· Datagen-8_0-fb: 1,706,561个顶点,107,507,376条边,这个数据集主要测试两个系统可处理的图规模能力

实验设计上我选择常用的SSSP、BFS、PageRank、WCC算法,以及较高复杂度的All Pair shortest Path length算法,以载图时间,内存占用和计算时间这三个指标为依据,对两个系统进行计算性能的比较。

NetworkX是一个单机系统,在实验中只考虑NetworkX在单机环境下的运行时间;GraphScope支持分布式运行,故进行两个配置,一个是单机4worker,另外一个配置是4台机器,每台机器4个worker。

二、实验结果

首先,GraphScope的载图速度比NetworkX显著提升。

在前三个图数据集中,无论是GraphScope的单机多worker模式,还是GraphScope的分布式模式,载图速度都比NetworkX快:

GraphScope单机模式载图速度平均比NetworkX快5倍,最高纪录——在datagen-7_5-fb上比NetworkX快了6倍。

分布式模式下GraphScope的载图时间比NetworkX平均快了27倍,最高纪录——在datagen-7_7-zf数据集上比NetworkX快了63倍。

在datagen-8_0-fb数据集上,NetworkX因内存溢出无法载图,GraphScope单机多worker和GraphScope分布式载图时间分别为142秒和13.6秒。

 表一:载图时间对比

载图时间

NetworkX

GraphScope单机

GraphScope分布式

twitter

11.2

3.1

1.8

datagen-7_5-fb

256

45.6

36.6

这篇关于NetworkX与GraphScope的性能对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802147

相关文章

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2