【algorithm】自动驾驶常见常考的几个模型和推导,顺便总结自己遇到的考题经验不断更新之———控制版

本文主要是介绍【algorithm】自动驾驶常见常考的几个模型和推导,顺便总结自己遇到的考题经验不断更新之———控制版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

本来快达成目标了,没想到公司遭受了问题,公司和同事我感觉还是挺好的,有国企的正规也有小企业的灵活,大家都很有学习欲望。
作为本次再次复习回忆如下:
把之前面试准备的 机器学习(基本搬运到CSDN平台了)、规划(基于之前的公司同事教导和常见算法轨迹 lattice em 路径 diji a star rrt rrt*)、控制(控制器和模型),工具链(matlab ide repo git anaconda ros linux操作)其他(frenet 、大地车辆坐标转换、点到线距离、找投影、插值、离散点求曲率(以及各种几何问题)、卡尔曼 三次道路多项式 地图参考平滑处理 滤波 轨迹优化)最小二乘:正规方程梯度下降、线性化刷题和有cpp相关的作为小白接触到的知识都总结成了word。 本文先总结搬运模型相关,希望大佬们给点方向提建议,渴望进步,其实对于经典现代控制论本身,很多东西都忘记了,只能作为笔记和考试记录存在了,实践中感觉一直用不上或者不需要再推导了。 现在的烦恼是:其中有很多新东西和非规划控制的内容由于工作方向我只能自己demo,最希望讨论和接触的是实践中积累的问题处理办法,还有能实际在工作中部署最新论文的东西,可惜工作就是工作,同时被专业方向卡住,只能积累再积累。

outline

  • stanley pp
  • 动力学 运动学 简单推导
  • mpc
  • pid
  • acado 和osqp求解 见另外两篇文章
    Acado:https://blog.csdn.net/weixin_46479223/article/details/133743263的实例中展示了acado如何求解mpc问题,
    另一篇是osqposqp:https://blog.csdn.net/weixin_46479223/article/details/135107257
  • 临时简略EM planner 信息
  • 车辆动力和运动模型推导

Stanley and pure pursuit

在这里插入图片描述

运动学

在这里插入图片描述

在这里插入图片描述

动力学

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

并联pid

  • 预瞄 2个点 近:lateraldisdiff lateraldisdiffrate 远headingdiff headingdiffrate
  • yawrate 要稳 pd要控制好
  • 找瞄准点用几何法

串联pid

在这里插入图片描述

MPC控制横向 pid纵向

(纵向mpc osqp见另一篇文章的demo)https://blog.csdn.net/weixin_46479223/article/details/135107257

会找投影点 预瞄要选好 用acado osqp ,具体模型一会更新

模型推导

在我的文章Acado:https://blog.csdn.net/weixin_46479223/article/details/133743263的实例中展示了acado如何求解mpc问题

可见acado很方便,直接给出车辆模型的微分方程,以及求解时域(步长)、约束、和目标函数就可以生成相关代码。
在这里插入图片描述

因此我们直接得出状态量之间的递推表达关系即可(状态转移方程),推导如下(当然也可以使用之前的动力学和运动学的推导来建立mpc,这里展示使用的另一种横向模型)
在这里插入图片描述

以下是除了模型之外的,mpc控制部分的处理(找投影点,预瞄点),以及纵向pid的设置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

其他:

-颠簸
-手力
-控制接口转化
-握手
-滤波
-限幅
-限rate
-侧倾
-前置车道线处理
-激活退方向盘稳定渐入渐出
-canoe ape分析
-matlab回放 ros回放
-线性化方法

  • usw.
  • pid传递函数根轨迹和Nyquist图(工程中直接调参) 现代控制状态空间方法
  • 最小二乘正规方程梯度下降
  • 找点 向量法:https://zhuanlan.zhihu.com/p/429676544
  • 点线距离
  • kkt

临时EM planner

在这里插入图片描述
补充:找起点时间要顺延一个planning cycle

  • 轨迹筛选、碰撞检测
  • 巡航为四次多项式 没有终点s
  • frenet下的平滑不代表卡迪尔下平滑
    注意 以下图片均出自于老王 bilibili
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

特殊情况

在这里插入图片描述
在这里插入图片描述

以前的杂乱总结版本

在这里插入图片描述
在这里插入图片描述

最后听讲(自己看)

在这里插入图片描述

临时 cpp gpt d 算法简易版本

之前理解 d就是带有权重的bfs问题,所以一直没有去认真实现代码,后来做了很多网格问题,但发现和真的图bfs还有使用优先队列的d还有细节要注意,见和gpt的问答,注意这段代码没有记录父节点

#include <iostream>
#include <vector>
#include <queue>
#include <limits>using namespace std;#define INF numeric_limits<int>::max()// 定义图的邻接矩阵表示法
typedef vector<vector<int>> Graph;// Dijkstra算法
void dijkstra(const Graph& graph, int start, vector<int>& distances, vector<int>& parents) {int n = graph.size(); // 图的节点数distances.resize(n, INF); // 初始化距离数组,全部设置为无穷大parents.resize(n, -1); // 初始化父节点数组,全部设置为-1vector<bool> visited(n, false); // 记录节点是否已被访问distances[start] = 0; // 起始节点到自身的距离为0// 创建优先队列,用于按照距离排序节点priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push({0, start}); // 将起始节点加入优先队列while (!pq.empty()) {// 从优先队列中取出当前距离最小的节点int curr_dist = pq.top().first;int curr_node = pq.top().second;pq.pop();// 如果该节点已被访问,则跳过if (visited[curr_node]) continue;// 将该节点标记为已访问visited[curr_node] = true;// 遍历当前节点的所有邻居节点for (int neighbor = 0; neighbor < n; ++neighbor) {// 如果当前节点到邻居节点的距离更短,则更新距离数组、父节点数组并将邻居节点加入优先队列if (graph[curr_node][neighbor] != 0 && distances[curr_node] + graph[curr_node][neighbor] < distances[neighbor]) {distances[neighbor] = distances[curr_node] + graph[curr_node][neighbor];parents[neighbor] = curr_node; // 更新邻居节点的父节点pq.push({distances[neighbor], neighbor});}}}
}// 输出最短路径
void printShortestPath(const vector<int>& parents, int node) {if (parents[node] == -1) {cout << node;return;}printShortestPath(parents, parents[node]);cout << " -> " << node;
}int main() {// 定义图的邻接矩阵Graph graph = {{0, 4, 0, 0, 0, 0, 0, 8, 0},{4, 0, 8, 0, 0, 0, 0, 11, 0},{0, 8, 0, 7, 0, 4, 0, 0, 2},{0, 0, 7, 0, 9, 14, 0, 0, 0},{0, 0, 0, 9, 0, 10, 0, 0, 0},{0, 0, 4, 14, 10, 0, 2, 0, 0},{0, 0, 0, 0, 0, 2, 0, 1, 6},{8, 11, 0, 0, 0, 0, 1, 0, 7},{0, 0, 2, 0, 0, 0, 6, 7, 0}};int start_node = 0; // 设置起始节点// 使用Dijkstra算法计算起始节点到所有节点的最短距离和记录父节点vector<int> distances;vector<int> parents;dijkstra(graph, start_node, distances, parents);// 输出最短路径cout << "Shortest paths from node " << start_node << ":\n";for (int i = 0; i < graph.size(); ++i) {cout << "Node " << start_node << " to Node " << i << ": ";printShortestPath(parents, i);cout << " (distance: " << distances[i] << ")" << endl;}return 0;
}//QKF:如果每次向qp里面push相邻的节点 ,那么qp 里面可能存在相同的节点 是通过 if (visited[curr_node]) continue;跳过去的嘛//GPT:是的,如果每次向优先队列 pq 中 push 相邻的节点,可能会导致 pq 中存在相同的节点。在这种情况下,通过 if (visited[curr_node]) continue; 来跳过已经访问过的节点是有必要的。//在 Dijkstra 算法中,如果不跳过已经访问过的节点,可能会导致多次将相同节点加入优先队列,并且每次加入的节点可能会有不同的距离值。这样会导致算法不断重新考虑相同的节点,从而增加了计算的开销,而且可能会导致错误的最短路径结果。//通过在代码中添加 if (visited[curr_node]) continue; 这样的语句,可以确保在每次迭代中只处理未被访问过的节点,避免了重复处理相同节点的情况,从而提高了算法的效率。

这篇关于【algorithm】自动驾驶常见常考的几个模型和推导,顺便总结自己遇到的考题经验不断更新之———控制版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801927

相关文章

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.