嵌入式学习第二十七天!(TCP并发模型)

2024-03-12 11:44

本文主要是介绍嵌入式学习第二十七天!(TCP并发模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TCP并发模型:

1. TCP多线程模型:

    缺点:创建线程会带来资源开销,能够实现的并发量比较有限。

2. IO模型:

    1. 阻塞IO:

        没有数据到来时,可以让任务挂起,节省CPU资源开销,提高系统效率

    2. 非阻塞IO:

        程序未接收到数据时一直执行,效率很低

        举例应用:

write.c

#include "head.h"int main(void)
{int fd = 0;char tmpbuff[1024] = {0};mkfifo("/tmp/myfifo", 0664);fd = open("/tmp/myfifo", O_WRONLY);if(fd == -1){perror("fail to open");return -1;}while(1){memset(tmpbuff, 0, sizeof(tmpbuff));gets(tmpbuff);write(fd, tmpbuff, strlen(tmpbuff));}close(fd);return 0;
}

        后面的举例应用的write.c都为上面所示

read.c

#include "head.h"int main(void)
{int fd = 0;int flags = 0;ssize_t nsize = 0;char *pret = NULL;char tmpbuff[1024] = {0};mkfifo("/tmp/myfifo", 0664);fd = open("/tmp/myfifo", O_RDONLY);if(fd == -1){perror("fail to open");return -1;}flags = fcntl(fd, F_GETFL);flags |= O_NONBLOCK;fcntl(fd, F_SETFL, flags);flags = fcntl(0, F_GETFL);flags |= O_NONBLOCK;fcntl(0, F_SETFL, flags);while(1){memset(tmpbuff, 0, sizeof(tmpbuff));pret = gets(tmpbuff);if(pret != NULL){printf("STDIN:%s\n", tmpbuff);}memset(tmpbuff, 0, sizeof(tmpbuff));nsize = read(fd, tmpbuff, sizeof(tmpbuff));if(nsize > 0){printf("RECV:%s\n", tmpbuff);}}close(fd);return 0;
}

        通过fcntl将fd和stdin文件描述符设置为非阻塞IO,所以read.c既可以通过管道接收消息,也可以同终端输入,接收消息,二者不会堵塞。

    3. 异步IO:

        只能绑定一个文件描述符用来读取数据

        举例应用:

read.c

#include "head.h"int fd = 0;void handler(int signo)
{char tmpbuff[1024] = {0};ssize_t nsize = 0;memset(tmpbuff, 0, sizeof(tmpbuff));nsize = read(fd, tmpbuff, sizeof(tmpbuff));if(nsize > 0){printf("RECV:%s\n", tmpbuff);}return;}int main(void)
{int flags = 0;ssize_t nsize = 0;char *pret = NULL;char tmpbuff[1024] = {0};signal(SIGIO, handler);mkfifo("/tmp/myfifo", 0664);fd = open("/tmp/myfifo", O_RDONLY);if(fd == -1){perror("fail to open");return -1;}flags = fcntl(fd, F_GETFL);flags |= O_ASYNC;fcntl(fd, F_SETFL, flags);fcntl(fd, F_SETOWN, getpid());while(1){memset(tmpbuff, 0, sizeof(tmpbuff));gets(tmpbuff);printf("STDIN:%s\n", tmpbuff);}close(fd);return 0;
}

    4. 多路复用:

        1. select:

            1. select监听的集合中的文件描述符有上限限制

            2. select有内核层向用户层数据空间拷贝的过程,占用系统资源开销

                原因:在使用select函数时,会涉及到内核层和用户层之间的数据传输。具体来说:select函数在内核层会监视一组文件描述符的状态变化,并在有变化发生时通知用户层。为了是实现这个功能,内核会定期检测文件描述符的状态,并在发生变化时将相关信息传递给用户层。这个过程涉及到内核层和用户层之间的数据传输,即内核层需要将监视的文件描述符的状态信息传递给用户层。这个传输过程会涉及到系统资源的开销,因为需要进行数据拷贝操作,将内核中的数据拷贝到用户空间,这个数据拷贝的过程会消耗一定的系统资源。

            3. select必须轮询检测产生事件的文件描述符

            4. select只能工作在水平触发模式(低速模式),无法工作在边沿触发模式(高速模式)

                原因:

                    1. 在水平触发模式下,一旦文件描述符中的数据可读或可写,select就会通知用户程序,并且如果这些描述符在之后的select调用中仍然保持可读或可写状态,select会再次通知程序。换句话说,在水平触发模式下,只要描述符的状态处于可读或可写状态,select就会通知程序。

                    2. 在边缘触发模式下,只有当描述符的状态发生变化时才会通知程序,这意味着如果描述符中的数据量发生变化或者有新的数据到达,程序才会被通知,而如果描述符的状态保持不变,即使在之后的select调用中它任然处于可读或可写状态,程序也不会被通知。

            举例应用:

read.c

#include "head.h"int main(void)
{int fd = 0;int flags = 0;ssize_t nsize = 0;char *pret = NULL;fd_set rdfds;fd_set tmpfds;int ret = 0;char tmpbuff[1024] = {0};mkfifo("/tmp/myfifo", 0664);fd = open("/tmp/myfifo", O_RDONLY);if(fd == -1){perror("fail to open");return -1;}FD_ZERO(&rdfds);FD_SET(fd, &rdfds);FD_SET(0, &rdfds);while(1){tmpfds = rdfds;ret = select(fd+1, &tmpfds, NULL, NULL, NULL);if(ret == -1){perror("fail to select");return -1;}if(FD_ISSET(0, &tmpfds)){memset(tmpbuff, 0, sizeof(tmpbuff));gets(tmpbuff);printf("STDIN:%s\n", tmpbuff);}if(FD_ISSET(fd, &tmpfds)){memset(tmpbuff, 0, sizeof(tmpbuff));read(fd, tmpbuff, sizeof(tmpbuff));printf("FIFO:%s\n", tmpbuff);}}close(fd);return 0;
}

        2. poll:

            1. poll有内核层向用户层数据空间拷贝的过程,占用系统资源开销

            2. poll必须轮询检测产生事件的文件描述符

            3. poll只能工作在水平触发模式(低速模式),无法工作在边沿触发模式(高速模式)

            举例应用:

read.c

#include "head.h"int main(void)
{int fd = 0;int ret = 0;int flags = 0;ssize_t nsize = 0;struct pollfd fds[2];char tmpbuff[1024] = {0};mkfifo("/tmp/myfifo", 0664);fd = open("/tmp/myfifo", O_RDONLY);if(fd == -1){perror("fail to open");return -1;}fds[0].fd = 0;fds[0].events = POLLIN;fds[1].fd = fd;fds[1].events = POLLIN;while(1){ret = poll(fds, 2, -1);if(ret == -1){perror("fail to poll");return -1;}if(fds[0].revents & POLLIN){memset(tmpbuff, 0, sizeof(tmpbuff));gets(tmpbuff);printf("STDIN:%s\n", tmpbuff);}if(fds[1].revents & POLLIN){memset(tmpbuff, 0, sizeof(tmpbuff));read(fd, tmpbuff, sizeof(tmpbuff));printf("FIFO:%s\n", tmpbuff);}}close(fd);return 0;
}

        3. epoll:

            1. epoll没有文件描述符上限限制

            2. epoll创建内核监听事件表,所以只需要在内核空间完成数据拷贝即可

            3. epoll会将产生事件的文件描述符对应的事件直接返回

            4. epoll可以工作在水平触发模式(默认:低速模式),还可以工作在边沿触发模式(高速模式) 在epoll_events的结构体中的events传入EPOLLIN | EPOLLET即可

            举例应用:

read.c

#include "head.h"int main(void)
{int i = 0;int fd = 0;int epfd = 0;int nready = 0;ssize_t nsize = 0;char tmpbuff[1024] = {0};struct epoll_event env;struct epoll_event retenv[2];mkfifo("/tmp/myfifo", 0664);fd = open("/tmp/myfifo", O_RDONLY);if(fd == -1){perror("fail to open");return -1;}epfd = epoll_create(2);if(epfd == -1){perror("fail to epoll_create");return -1;}env.data.fd = 0;env.events = EPOLLIN;epoll_ctl(epfd, EPOLL_CTL_ADD, 0, &env);env.data.fd = fd;env.events = EPOLLIN;epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &env);while(1){nready = epoll_wait(epfd, retenv, 2, -1);if(nready == -1){perror("fail to epoll_wait");return -1;}for(i = 0; i < nready; i++){if(retenv[i].data.fd == 0){memset(tmpbuff, 0, sizeof(tmpbuff));gets(tmpbuff);printf("STDIN:%s\n", tmpbuff);}else if(retenv[i].data.fd == fd){memset(tmpbuff, 0, sizeof(tmpbuff));read(fd, tmpbuff, sizeof(tmpbuff));printf("FIFO:%s\n", tmpbuff);}}}close(fd);return 0;
}

3. 函数接口:

    1. select:

int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);

        功能:select监听文件描述符集合中是否有文件描述编程ready状态

        参数:

            nfds:最大文件描述符的值+1

            reafds:读文件描述符集合

            writefds:写文件描述符集合

            exceptfds:其余文件描述符集合

            timeout:等待的时长

                        NULL:一直等待

        返回值:

            成功返回文件描述符集合中的文件描述符个数
            失败返回-1

    void FD_CLR(int fd, fd_set *set);

                功能:判断文件描述符fd是否仍在集合中

    void FD_SET(int fd, fd_set *set);

                功能:将文件描述符fd加入到集合中

    int  FD_ISSET(int fd, fd_set *set);

                功能:判断文件描述符fd是否仍在集合中

    void FD_ZERO(fd_set *set);

                功能:将文件描述符集合清0

    2. poll:

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

        功能:监听文件描述符集合是否有事件发生

        参数:

            fds:监听文件描述符集合是否有时间发生

            nfds:监听文件描述符集合元素个数

            timeout:等待时间(-1一直等待)

struct pollfd {int   fd;         /* file descriptor */short events;     /* requested events */short revents;    /* returned events */
};

                fd:监听的文件描述

                events:要监听的事件,POLLIN:是否可读,POLLOUT:是否可写

                revents:实际产生的事件

    3. epoll:

        1. epoll_create:
int epoll_create(int size);

            功能:创建一张内核事件表

            参数:

                size:事件的个数

            返回值:

                成功返回文件描述符
                失败返回-1

        2. epoll_ctl:
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

            功能:维护epoll时间表

            参数:

                epfd:事件表的文件描述符

                op:

                    EPOLL_CTL_ADD     添加事件

                    EPOLL_CTL_MODE  修改事件

                    EPOLL_CTL_DEL      删除事件

                fd:操作的文件描述符

                events:事件对应的事件

typedef union epoll_data {void    *ptr;in    fd;uint32_t    u32;uint64_t    u64;
} epoll_data_t;struct epoll_event {uint32_t     events;      /* Epoll events */epoll_data_t data;        /* User data variable */
};

            返回值:

                成功返回0 
                失败返回-1 

        3. epoll_wait:
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

            功能:监听事件表中的事件

            参数:

                epfd:文件描述符

                events:存放实际产生事件的数组空间首地址

                maxevents:最多存放事件的个数

                timeout:设定监听的时间(超过该时间则不再监听)

                        -1:一直监听直到有事件发生

            返回值:

                成功返回产生事件的文件描述符个数
                失败返回-1 
                如果时间达到仍没有事件发生返回0

4. 练习作业:

        1. 编写TCP并发模型之select模型

client.c

#include "head.h"int CreateTcpClient(char *pip, int port)
{int ret = 0;int sockfd = 0;struct sockaddr_in seraddr;sockfd = socket(AF_INET, SOCK_STREAM, 0);if (-1 == sockfd){perror("fail to socket");return -1;}seraddr.sin_family = AF_INET;seraddr.sin_port = htons(port);seraddr.sin_addr.s_addr = inet_addr(pip);ret = connect(sockfd, (struct sockaddr *)&seraddr, sizeof(seraddr));if (-1 == ret){perror("fail to connect");return -1;}return sockfd;
}int main(void)
{int sockfd = 0;char tmpbuff[4096] = {"hello world"};int cnt = 0;ssize_t nsize = 0;sockfd = CreateTcpClient("192.168.1.125", 50000);while (1){memset(tmpbuff, 0, sizeof(tmpbuff));sprintf(tmpbuff, "hello world --- %d", cnt);cnt++;nsize = send(sockfd, tmpbuff, strlen(tmpbuff), 0);if (-1 == nsize){perror("fail to send");return -1;}memset(tmpbuff, 0, sizeof(tmpbuff));nsize = recv(sockfd, tmpbuff, sizeof(tmpbuff), 0);if (-1 == nsize){perror("fail to recv");return -1;}printf("RECV:%s\n", tmpbuff);}close(sockfd);return 0;
}

        后面的client.c都为上面所示

server.c

#include "head.h"int CreateListenSocket(char *pip, int port)
{int ret = 0;int sockfd = 0;struct sockaddr_in serveraddr;sockfd = socket(AF_INET, SOCK_STREAM, 0);if(sockfd == -1){perror("fail to socket");return -1;}serveraddr.sin_family = AF_INET;serveraddr.sin_port = htons(port);serveraddr.sin_addr.s_addr = inet_addr(pip);ret = bind(sockfd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));if(ret == -1){perror("fail to bind");return -1;}ret =listen(sockfd, 10);if(ret == -1){perror("fail to listen");return -1;}return sockfd;
}int HandleTcpClient(int confd)
{char tmpbuff[4096] = {0};ssize_t nsize = 0;memset(tmpbuff, 0, sizeof(tmpbuff));nsize = recv(confd, tmpbuff, sizeof(tmpbuff), 0);if(nsize == -1){perror("fail to recv");return -1;}else if(nsize == 0){return 0;}sprintf(tmpbuff, "%s ------echo", tmpbuff);nsize = send(confd, tmpbuff, strlen(tmpbuff), 0);if(nsize == -1){perror("fail to send");return -1;}return nsize;}int main(void)
{int i = 0;int ret = 0;int confd = 0;int sockfd = 0;fd_set rdfds;fd_set tmpfds;int maxfd = 0;sockfd = CreateListenSocket("192.168.1.125", 50000);FD_ZERO(&rdfds);FD_SET(sockfd, &rdfds);maxfd = sockfd;while(1){tmpfds = rdfds;ret = select(maxfd+1, &tmpfds, NULL, NULL, NULL);if(ret == -1){perror("fail to select");return -1;}if(FD_ISSET(sockfd, &tmpfds)){confd = accept(sockfd, NULL, NULL);if(confd == -1){perror("fail to accept");FD_CLR(sockfd, &rdfds);close(sockfd);continue;}FD_SET(confd, &rdfds);maxfd = maxfd > confd ? maxfd : confd;}for(i = sockfd+1; i <= maxfd; i++){if(FD_ISSET(i, &tmpfds)){ret = HandleTcpClient(i);if(ret == -1){fprintf(stderr, "handle client fialed!\n");FD_CLR(i, &rdfds);close(i);continue;}else if(ret == 0){fprintf(stderr, "client disconnected!\n");FD_CLR(i, &rdfds);close(i);continue;}}}}close(confd);close(sockfd);return 0;
}

        2. 编写TCP并发模型之poll模型

server.c

#include "head.h"int CreateListenSocket(char *pip, int port)
{int ret = 0;int sockfd = 0;struct sockaddr_in serveraddr;sockfd = socket(AF_INET, SOCK_STREAM, 0);if(sockfd == -1){perror("fail to socket");return -1;}serveraddr.sin_family = AF_INET;serveraddr.sin_port = htons(port);serveraddr.sin_addr.s_addr = inet_addr(pip);ret = bind(sockfd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));if(ret == -1){perror("fail to bind");return -1;}ret =listen(sockfd, 10);if(ret == -1){perror("fail to listen");return -1;}return sockfd;
}int HandleTcpClient(int confd)
{char tmpbuff[4096] = {0};ssize_t nsize = 0;memset(tmpbuff, 0, sizeof(tmpbuff));nsize = recv(confd, tmpbuff, sizeof(tmpbuff), 0);if(nsize == -1){perror("fail to recv");return -1;}else if(nsize == 0){return 0;}sprintf(tmpbuff, "%s ------echo", tmpbuff);nsize = send(confd, tmpbuff, strlen(tmpbuff), 0);if(nsize == -1){perror("fail to send");return -1;}return nsize;}int InitFds(struct pollfd *fds, int maxlen)
{int i = 0;for(i = 0; i < maxlen; i++){fds[i].fd = -1;}return 0;
}int AddFds(struct pollfd *fds, int maxlen, int fd, short env)
{int i = 0;for(i = 0; i < maxlen; i++){if(fds[i].fd == -1){fds[i].fd = fd;fds[i].events = env;break;}}if(i == maxlen){return -1;}return 0;
}int DeleteFds(struct pollfd *fds, int maxlen, int fd)
{int i = 0;for(i = 0; i < maxlen; i++){if(fds[i].fd == fd){fds[i].fd = -1;break;}}return 0;
}int main(void)
{int i = 0;int ret = 0;int nready = 0;int confd = 0;int sockfd = 0;struct pollfd fds[1024];sockfd = CreateListenSocket("192.168.1.125", 50000);InitFds(fds, 1024);AddFds(fds, 1024, sockfd, POLLIN);while(1){nready = poll(fds, 1024, -1);if(nready == -1){perror("fail to poll");return -1;}for(i = 0; i < 1024; i++){if(fds[i] == -1){continue;}if(fds[i].revents & POLLIN && fds[i].fd == sockfd){confd = accept(sockfd, NULL, NULL);if(confd == -1){perror("fail to accept");close(sockfd);DeleteFds(fds, 1024, sockfd);continue;}AddFds(fds, 1024, confd, POLLIN);}else if(fds[i].revents & POLLIN && fds[i].fd != sockfd){ret = HandleTcpClient(fds[i].fd);if(ret == -1){fprintf(stderr, "handle tcp client failed!\n");close(fds[i].fd);DeleteFds(fds, 1024, fds[i].fd);continue;}else if(ret == 0){fprintf(stderr, "client disconnected!\n");close(fds[i].fd);DeleteFds(fds, 1024, fds[i].fd);continue;}}}}close(confd);close(sockfd);return 0;
}

        3. 编写TCP并发模型之epoll模型

server.c

#include "head.h"int CreateListenSocket(char *pip, int port)
{int ret = 0;int sockfd = 0;struct sockaddr_in serveraddr;sockfd = socket(AF_INET, SOCK_STREAM, 0);if(sockfd == -1){perror("fail to socket");return -1;}serveraddr.sin_family = AF_INET;serveraddr.sin_port = htons(port);serveraddr.sin_addr.s_addr = inet_addr(pip);ret = bind(sockfd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));if(ret == -1){perror("fail to bind");return -1;}ret =listen(sockfd, 10);if(ret == -1){perror("fail to listen");return -1;}return sockfd;
}int HandleTcpClient(int confd)
{char tmpbuff[4096] = {0};ssize_t nsize = 0;memset(tmpbuff, 0, sizeof(tmpbuff));nsize = recv(confd, tmpbuff, sizeof(tmpbuff), 0);if(nsize == -1){perror("fail to recv");return -1;}else if(nsize == 0){return 0;}sprintf(tmpbuff, "%s ------echo", tmpbuff);nsize = send(confd, tmpbuff, strlen(tmpbuff), 0);if(nsize == -1){perror("fail to send");return -1;}return nsize;}int AddFd(int epfd, int fd, uint32_t env)
{int ret = 0;struct epoll_event tmpenv;tmpenv.data.fd = fd;tmpenv.events = env;ret = epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &tmpenv);if(ret == -1){perror("fail to epoll_ctl");return -1;}return 0;
}int DelFd(int epfd, int fd)
{int ret = 0;ret = epoll_ctl(epfd, EPOLL_CTL_DEL, fd, NULL);if(ret == -1){perror("fail to epoll_ctl");return -1;}return 0;
}int main(void)
{int i = 0;int ret = 0;int nready = 0;int confd = 0;int sockfd = 0;struct epoll_event retenv[1024];int epfd = 0;epfd = epoll_create(1024);if(epfd == -1){perror("fail to epoll_create");return -1;}sockfd = CreateListenSocket("192.168.1.155", 50000);AddFd(epfd, sockfd, EPOLLIN);while(1){nready = epoll_wait(epfd, retenv, 1024, -1);if(nready == -1){perror("fail to epoll");return -1;}for(i = 0; i < nready; i++){if(retenv[i].data.fd == sockfd){confd = accept(sockfd, NULL, NULL);if(confd == -1){perror("fail to accept");DelFd(epfd, sockfd);close(sockfd);continue;}AddFd(epfd, confd, EPOLLIN);}else if(retenv[i].data.fd != sockfd){ret = HandleTcpClient(retenv[i].data.fd);if(ret == -1){fprintf(stderr, "handle tcp client failed!\n");DelFd(epfd, retenv[i].data.fd);close(retenv[i].data.fd);continue;}else if(ret == 0){fprintf(stderr, "client disconnected!\n");DelFd(epfd, retenv[i].data.fd);close(retenv[i].data.fd);continue;}}}}close(epfd);close(sockfd);return 0;
}

这篇关于嵌入式学习第二十七天!(TCP并发模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801151

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

嵌入式Linux之使用设备树驱动GPIO的实现方式

《嵌入式Linux之使用设备树驱动GPIO的实现方式》:本文主要介绍嵌入式Linux之使用设备树驱动GPIO的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、设备树配置1.1 添加 pinctrl 节点1.2 添加 LED 设备节点二、编写驱动程序2.1

嵌入式Linux驱动中的异步通知机制详解

《嵌入式Linux驱动中的异步通知机制详解》:本文主要介绍嵌入式Linux驱动中的异步通知机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、异步通知的核心概念1. 什么是异步通知2. 异步通知的关键组件二、异步通知的实现原理三、代码示例分析1. 设备结构