李沐老师 PyTorch版——线性回归 + 基础优化算法(1)

2024-03-12 06:10

本文主要是介绍李沐老师 PyTorch版——线性回归 + 基础优化算法(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 08 线性回归 + 基础优化算法
    • torch.normal 正太分布
    • torch.arange
    • torch.randn
    • torch.matmul
    • plt.scatter
  • linear-regression-scratch.ipynb
    • 生成随机样本
    • 定义模型
    • 定义损失函数
    • 定义优化算法
    • 定义训练


前言

在李老师的《动手学深度学习》系列课程的学习过程中,李老师深入浅出地介绍了不少实打实的知识点。不过在李老师代码实现的过程中,确确实实地暴露出了自己许多知识点上的缺失。例如对 Python 高级索引的不了解、PyTorch 许多包的不了解。自己经常在 jupyter 的课件中做出一些注释,不过还是想着把一些比较重要的内容拿出来,做认真总结和深化。有的时候我不一定会把 jupyter 拿出来反复看,但是可以在这里记录自己的学习和成长。


08 线性回归 + 基础优化算法

- chapter_linear-networks- linear-regression-scratch.ipynb - linear-regression-concise.ipynb

由于李老师给的课件是 ipynb 的文件,针对一些函数我自己决定模仿实现,其实可以选择在 ipynb 文件中仿写,但是不方便放在一起的总结回顾,所以我选择在 pycharm 中进行总结。在 pycharm 中如何添加一个 anaconda 已创建好的环境呢?可以参考这个链接。

torch.normal 正太分布

torch.normal文档

torch.normal(mean, std, size, *, out=None) → Tensor.
我们往往需要指定 meanstd 以及输出张量的形状 size

>>> torch.normal(2, 3, size=(1, 4)) # size 传入一个元组
tensor([[-1.3987, -1.9544,  3.6048,  0.7909]])

torch.arange

torch.arange文档

torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
返回一个 1-D tensor 数组,大小是 ⌈ end-start  step  ⌉ \left\lceil\frac{\text { end-start }}{\text { step }}\right\rceil  step  end-start ,取值区间是 [ s t a r t , e n d ) [start, end) [start,end),区间内离散取值的步长由 step 决定。

>>> torch.arange(5) # start=0
tensor([ 0,  1,  2,  3,  4])
>>> torch.arange(1, 4) # step=1
tensor([ 1,  2,  3])
>>> torch.arange(1, 2.5, 0.5)
tensor([ 1.0000,  1.5000,  2.0000])

torch.randn

torch.randn文档

torch.randn(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
返回来自标准正太分布的随机数张量。由 size 指定返回的张量形状,size 可以是列表或者元素。

>>> torch.randn(2,3)
tensor([[ 1.0009,  2.1924, -0.6118],[ 1.3229,  0.7500,  1.9034]])
>>> torch.randn([2,3])
tensor([[ 0.9694, -0.3568,  0.3278],[-1.1396,  0.2060, -0.4477]])
>>> torch.randn((2,3))
tensor([[ 1.4538,  1.4367,  1.6953],[ 0.1987,  0.4661, -1.6386]])

torch.matmul

torch.matmul文档

torch.matmul(input, other, *, out=None) → Tensor
在文档中介绍的情况比较复杂,这里仅简单的探讨两种情况。
第一,两个 1-D tensor 参与运算,结果是两个向量的点乘 dot product 结果,也就是 0-D 一个数字。

>>> a = torch.randn(3)
>>> b = torch.randn(3)
>>> torch.matmul(a,b)
tensor(0.8469)
>>> torch.matmul(a,b).size()
torch.Size([])

第二,两个 2-D tensor 参与运算,两个矩阵乘法 matrix-matrix product

>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(4, 5)
>>> torch.matmul(tensor1, tensor2).shape
torch.Size([3, 5])

plt.scatter

scatter文档

Axes.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)
x, y → 散点的坐标
s → 散点的面积
c → 散点的颜色(默认值为蓝色,‘b’,其余颜色同plt.plot( ))
marker → 散点样式(默认值为实心圆,‘o’,其余样式同plt.plot( ))
alpha → 散点透明度([0, 1]之间的数,0表示完全透明,1则表示完全不透明)
linewidths →散点的边缘线宽
edgecolors → 散点的边缘颜色

关于散点的具体样式可以参考知乎文章

linear-regression-scratch.ipynb

生成随机样本

根据带有噪声的线性模型构造一个人造数据集。 我们使用线性模型参数 w = [ 2 , − 3.4 ] ⊤ 、 b = 4.2 \mathbf{w}=[2,-3.4]^{\top} 、 b=4.2 w=[2,3.4]b=4.2 和噪声项 𝜖 生成数据集及其标签: y = X w + b + ϵ \mathbf{y}=\mathbf{X} \mathbf{w}+b+\epsilon y=Xw+b+ϵ

# 根据 w b 生成数据集
def synthetic_data(w, b, num_examples):x = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(x, w) + by += torch.normal(0, 0.01, y.shape)return x, ytrue_w = torch.tensor([2, -3.4])
true_b = 4.2
batch_size = 10
features, labels = synthetic_data(true_w, true_b, 1000)

我们可以画出生成的样本数据。

# 设置绘图的边框大小,不必完全展示所有的点
d2l.set_figsize()
# 第1列的数据因为 w 为负,所以数据是负相关
# s 代表着散点的面积
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), s=1)
d2l.plt.scatter(features[:, 0].detach().numpy(), labels.detach().numpy(), s=1)
d2l.plt.show()

在这里插入图片描述

定义一个样本数据的迭代函数,以实现小批量随机梯度下降优化我们的模型参数。该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。

# 根据批量大小,返回特征样本和对应的标签
def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = indices[i:min(num_examples, i + batch_size)]# print(batch_indices)yield features[batch_indices], labels[batch_indices]

定义模型

# 定义模型,将模型的输入和参数同模型的输出关联起来
def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b

定义损失函数

# 定义损失函数,这里之前有点问题,因为 y.shape = torch.tensor([10])
# y_hat.shape = torch.tensor([10,1])
def squared_loss(y_hat, y):"""均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

# 定义优化算法
def sgd(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad():for param in params:# 我们对 batch_size 个样本使用损失函数计算自动求导得到的梯度是累计效果,在此我们求平均值param -= param.grad * lr / batch_size# pytorch会不断的累加变量的梯度,所以每更新一次参数,都要使对应的梯度清零param.grad.zero_()

定义训练

lr = 0.03
epochs = 10
net = linreg
loss = squared_loss
for epoch in range(epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)# print(l.shape)l.sum().backward()sgd([w, b], lr, batch_size)with torch.no_grad():train_l = loss(net(features, w, b), labels)# python 的 format 用法print(f'epoch{epoch + 1},loss{float(train_l.mean()):.7f}')

这篇关于李沐老师 PyTorch版——线性回归 + 基础优化算法(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/800357

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.