一起talk C栗子吧(第一百二十九回:C语言实例--C程序内存布局一)

本文主要是介绍一起talk C栗子吧(第一百二十九回:C语言实例--C程序内存布局一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


各位看官们,大家好,上一回中咱们说的是查看当前进程信息的例子,这一回咱们说的例子是:C程序内存布局。闲话休提,言归正转。让我们一起talk C栗子吧!

看官们,我们编写的每一个C程序都会被加载到内存中运行,那么C程序在内存中是如何存放的呢?我们今天一起来看看C程序在内存中的布局。

C程序在内存中主要有四个分区,它们分别是代码区,数据区,堆区和栈区。这些区域从低地址向高地址依次排列。为了大家更加直观地了解内存布局,我画了一张图供大家参考:

这里写图片描述

我们接下来依次介绍一下这些区域的作用和内容。

  • 代码区:

代码区也叫正文区或者文本区。另外,在英文资料中经常使用 text section来表示该区域,因此有些中文资料叫文本段或者代码段。其英文名是.text。总之,不管是中文还是英文,只是名称和叫法不同而已。代码区里存放着程序的代码,当然了,这里的代码不是我们用C语言写的代码,而是能被CPU执行的指令,也就是我们写的C程序经过编译后形成的CPU指令。

  • 数据区:

数据区也叫数据段,在英文资料中经常使用data section来表示该区域。依据区域中数据是否被初始化,它又可以分为两个部分,一部分存放未初始化的数据,该区域的英文名称是.bss;另外一部分存放初始化的数据,该区域的英文名称是.data。

  • 堆区:

堆区是大小可变的区域,程序中动态分配的内存位于该区域内。比如我们在程序中使用malloc分配的内存区域就位于该区域中。

  • 栈区:

栈区也是大小可变的区域,该区域中存放着程序中与函数调用相关的信息。因为对该区域的操作使用了栈“先进后出”的原理,所以取名叫栈区。

看官们,是不是觉得有些抽象呢,其实这些内容属于理论,理论嘛总是抽象的。不过,接下来咱们通过实际的例子来让大家亲身体验一下。我们使用最经典的“hello world程序”来给大家做示范。

#include <stdio.h>int main()
{printf("hello world \n");return 0;
}

我们把该hello world程序保存到文件中,编译该文件并且生成可以执行文件s。然后通过readelf工具来查看可执行文件中的各个区域(section)。详细的结果如下:

readelf -S s          //查看可执行文件中的各个区域
There are 30 section headers, starting at offset 0x1178:Section Headers:[Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al[ 0]                   NULL            00000000 000000 000000 00      0   0  0[ 1] .interp           PROGBITS        08048154 000154 000013 00   A  0   0  1[ 2] .note.ABI-tag     NOTE            08048168 000168 000020 00   A  0   0  4[ 3] .note.gnu.build-i NOTE            08048188 000188 000024 00   A  0   0  4[ 4] .gnu.hash         GNU_HASH        080481ac 0001ac 000020 04   A  5   0  4[ 5] .dynsym           DYNSYM          080481cc 0001cc 000050 10   A  6   1  4[ 6] .dynstr           STRTAB          0804821c 00021c 00004a 00   A  0   0  1[ 7] .gnu.version      VERSYM          08048266 000266 00000a 02   A  5   0  2[ 8] .gnu.version_r    VERNEED         08048270 000270 000020 00   A  6   1  4[ 9] .rel.dyn          REL             08048290 000290 000008 08   A  5   0  4[10] .rel.plt          REL             08048298 000298 000018 08   A  5  12  4[11] .init             PROGBITS        080482b0 0002b0 000023 00  AX  0   0  4[12] .plt              PROGBITS        080482e0 0002e0 000040 04  AX  0   0 16[13] .text             PROGBITS        08048320 000320 000192 00  AX  0   0 16[14] .fini             PROGBITS        080484b4 0004b4 000014 00  AX  0   0  4[15] .rodata           PROGBITS        080484c8 0004c8 000014 00   A  0   0  4[16] .eh_frame_hdr     PROGBITS        080484dc 0004dc 00002c 00   A  0   0  4[17] .eh_frame         PROGBITS        08048508 000508 0000b0 00   A  0   0  4[18] .init_array       INIT_ARRAY      08049f08 000f08 000004 00  WA  0   0  4[19] .fini_array       FINI_ARRAY      08049f0c 000f0c 000004 00  WA  0   0  4[20] .jcr              PROGBITS        08049f10 000f10 000004 00  WA  0   0  4[21] .dynamic          DYNAMIC         08049f14 000f14 0000e8 08  WA  6   0  4[22] .got              PROGBITS        08049ffc 000ffc 000004 04  WA  0   0  4[23] .got.plt          PROGBITS        0804a000 001000 000018 04  WA  0   0  4[24] .data             PROGBITS        0804a018 001018 000008 00  WA  0   0  4[25] .bss              NOBITS          0804a020 001020 000004 00  WA  0   0  1[26] .comment          PROGBITS        00000000 001020 00004f 01  MS  0   0  1[27] .shstrtab         STRTAB          00000000 00106f 000106 00      0   0  1[28] .symtab           SYMTAB          00000000 001628 000430 10     29  45  4[29] .strtab           STRTAB          00000000 001a58 00024c 00      0   0  1
Key to Flags:W (write), A (alloc), X (execute), M (merge), S (strings)I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)O (extra OS processing required) o (OS specific), p (processor specific)

从上面的结果中我们可以看到,可执行文件中一共有30个区域,我们只看最重要的区域,其它的区域暂时忽略掉。代码区(.text)位于第14号区域中,数据区中的初始化区域(.data)位于第25号区域中,数据区中的未初始化区域(.bss)位于第26号区域中,由此可见它们还是邻居呢。

这时有看官提问了,怎么没有看到堆区和栈区呢?这位看官问的好,堆区和栈区需要在程序运行才能体现出来,这个程序只是静态的,还没有运行,所以不能通过工具查看到堆区和栈区。

看官们,最后我再补充一下,我们在这里说的内存布局是指内存的逻辑空间,或者说内存的虚拟地址空间,而不是内存的物理空间或者说内存的物理地址空间。在Linux系统中我们只能操作内存的逻辑空间,我们通常说的内存地址是内存的虚拟地址,内存的物理地址由Linux内核来管理,我们是不能直接访问该物理地址的,这样做一方面可以减少应用程序开发人员的负担,另一方面可以更加有效地管理内存空间。

各位看官,关于C程序内存布局的例子咱们就说到这里。欲知后面还有什么例子,且听下回分解 。


这篇关于一起talk C栗子吧(第一百二十九回:C语言实例--C程序内存布局一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/800195

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路