Linux——文件缓冲区与模拟实现stdio.h

2024-03-12 03:36

本文主要是介绍Linux——文件缓冲区与模拟实现stdio.h,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

我们学习了系统层面上的文件操作,也明白了重定向的基本原理,在重定向中,我们使用fflush(stdout)刷新了缓冲区,当时我们仅仅知道重定向需要刷新缓冲区,但是不知道其所以然,今天我们来见识一下。

一、缓冲区

缓冲区的本质就是内存的一部分,C标准库提供了他的缓冲区,操作系统也有自己的缓冲区,我们绝大部分使用的缓冲区是C/C++的缓冲区

大家看如下代码,理解一下缓冲区的作用

明明代码中hello linux在前面,休眠在后面,按道理应该是先打印内容,再进行休眠才对,这里等到睡眠结束才打印出来结果。这就是缓冲区在从中起作用。

举个例子

我在重庆,我的朋友在四川,当我想要给他一箱娃哈哈AD钙奶的时候, 如果我开车屁颠屁颠的送过去,确保再他手上之后再返回,效率就会十分低下,如果我将AD钙奶给菜鸟驿站,让菜鸟驿站帮我送过去,虽然时间没有变快,但是效率肯定变高了(驿站会存很多快递一起往四川寄过去)

其中,菜鸟驿站就是缓冲区,缓冲区的作用就是提高使用者的效率,同时因为有缓冲区的存在,我们积累了一部分再统一发送,这也变相的提高了发送的效率

二、缓冲区的刷新方式

缓冲区能够暂存数据,那么他肯定有相应的刷新策略

一般策略

        1.无缓冲(立即刷新)

        2.行缓冲(行刷新)

        3.全缓冲(缓冲区满了,再刷新)

特殊情况

        1.用户输入fflush(),强制刷新。

        2.进程退出的时候,也要进行刷新缓冲区

对于一般显示器文件,采用行缓冲的策略

对于磁盘上的文件,采用全缓冲的策略

三、缓冲区的样例

执行,打印出结果,我们选择重定向到文件中,发现打印顺序不一样。 

 我们在最后面添加上fork,按道理打印应该跟之前一样

这里打印到显示器是正常现象,重定向到文件中竟然超级加倍了 

明明fork在最后,fork之后没有代码需要执行的,为什么C提供的打印会打印双份,而系统调用依然是只有一个。 

我们一步步分析

1.显示器文件的刷新策略是行刷新,我们在显示器上打印都是带了‘\n’,fork之前,数据已经全部被刷新,包括系统调用接口。

2.重定向到log.txt,本质是向磁盘进行写入,刷新方式由行刷新变成了全缓冲。

3.全缓冲意味着缓冲区变大,写入的数据不足以将缓冲区填满,fork执行后,数据依然在缓冲区中,没有刷新出去

4.这里谈到的缓冲区,是C语言提供的缓冲区,跟操作系统没关系(因为系统调用打印并没有加倍,C加倍了,一定跟C脱不了关系)

5.C/C++提供的缓冲区,里面一定保存了用户的数据,这属于当前进程自己的数据,如果缓冲区刷新,将数据交给了操作系统,就由操作系统来帮我们处理了,不属于当前进程了。

6.当进程退出时,一般都要强制刷新缓冲区。

根据上述内容,我们小总结一下

fork之后,数据仍在C语言的缓冲区中,属于当前进程自己的数据,那么fork之后,父子进程代码和数据共享,同时父子进程陆续退出,退出时会刷新缓冲区(将数据给操作系统——也算写入),就会发生写时拷贝,父给操作系统一份,子也会给操作系统一份,因此会打印两份内容!!!

而write系统调用,没有使用C语言的缓冲区,直接写入到操作系统中,并不属于该进程,因此不会写时拷贝。


那么你兜兜转转说了这么多,还没说什么叫刷新?为什么重定向到文件中,write先行打印?

从C语言缓冲区写入到操作系统内部称为刷新,而write函数,根本没有经过C语言缓冲区,直接在操作系统内部,因此重定向时 write 先打印!!!

C语言搞缓冲区出来就是为了提高效率,C语言追求的就是效率,姿势可以不帅,但速度一定要快,写入到C语言缓冲区速度要比写入到操作系统快多了,写入完成直接返回运行后续代码了,直到写满了缓冲区或者进程退出时,一起将缓冲区的内容再写到操作系统中。

而后续操作系统中给每一个文件也设置了文件缓冲区,操作系统再根据他自己的刷新策略进行刷新,写入到磁盘中,和用户已经没关系了。

四、C语言缓冲区在哪

说了这么多,我也知道缓冲区确实存在,那他到底在哪里呢?

答案是在FILE结构体里,我们输入输出都要有一个FILE,像printf函数,虽然传参不需要FILE,但他内部一定封装了

比如,当我们进行scanf输入的时候,我们输入的字符都会被暂存到stdin的缓冲区中,再根据输入的%d或者其他格式,帮我们转化。

五、简易的stdio.h

我们写简单一点,目的是帮助我们更好理解缓冲区和重定向,只需要四个函数,fopen,fclose,fprintf,fflush。

1.mystdio.h

那么mystdio.h头文件如下,MyFile结构体中,有fileno,flag,buffer,end。

2.mystdio.c

my_fopen函数,首先先判断方式为“r”、“w”、“a”,还是其他,如果flag中有O_CREAT,则open打开文件需要添加权限掩码。malloc开辟MyFile空间,同时初始化一下。

 my_fflush函数刷新,使用write写到操作系统中

my_fwrite函数,先使用memcpy从s里面把数据拷贝到buffer(不用strcpy是不拷贝"\0"),判断刷新方式与end大小,看看是否需要刷新,循环遍历‘\n’,防止出现str = "abcd\nefg"的情况。发现 '\n' 就先处理end大小,再退出循环开始刷新,后面再将str中\n后面的数据拷贝回buffer的起始位置,再处理end。

 my_fclose函数简单,退出前先刷新一下就可以了,再调用close。

3.main.c

结果如下,每次遇到 '\n' 都会进行缓冲区的刷新。 因此总是在hello后面进程刷新

通过模拟的方式能帮我们更好理解缓冲区的概念。

最后附上总代码

mystdio.h

#pragma once#define SIZE 4096
#define FLUSH_NONE 1
#define FLUSH_LINE 2
#define FLUSH_ALL 4
typedef struct _MyFile
{int fileno;         //文件描述符int flag;           //刷新方式char buffer[SIZE];  //缓冲区int end;            //缓冲区大小                   
}MyFile;MyFile *my_fopen(const char* path,const char* mode);int my_fwrite(const char* s, int num,MyFile *stream);int my_fflush(MyFile* stream);int my_fclose(MyFile* stream);

mystdio.c 

 

#include "mystdio.h"    
#include<string.h>    
#include<sys/types.h>    
#include<sys/stat.h>    
#include<fcntl.h>    
#include<unistd.h>    
#include<errno.h>    
#include<stdlib.h>    
MyFile *my_fopen(const char* path,const char* mode)    
{    int fd = 0;    int flag = 0;    if(strcmp(mode,"r")== 0)    {    flag |= O_RDONLY;    }    else if(strcmp(mode,"w")==0)    {    flag |= O_WRONLY|O_CREAT|O_WRONLY;    }    else if(strcmp(mode,"a")==0)    {    flag |= O_WRONLY|O_CREAT|O_APPEND;    }    else{    //其他模式      }    if(flag & O_CREAT)    {    fd = open(path,flag,0666);    }    else    {    fd = open(path,flag);    }    if(fd < 0)    {    errno = 2;    return NULL;    }    MyFile* fp = (MyFile*)malloc(sizeof(MyFile));    if(!fp)    {    errno = 3;    return NULL;    }    fp->flag = FLUSH_LINE;    fp->end = 0;                                                 fp->fileno = fd;    return fp;    
}    
int my_fwrite(const char* s,int num,MyFile *stream)    
{memcpy(stream->buffer+stream->end,s,num);stream->end += num;//判断是否需要刷新if((stream->flag & FLUSH_LINE)&&stream->end>0){int i = 0;int len = 0;//记录\n后还有几个字符for(;i<stream->end;i++){if(stream->buffer[i]=='\n'){len = stream->end - i - 1;stream->end = i+1;break;}}my_fflush(stream);memcpy(stream->buffer,stream->buffer+i+1,len);stream->end = len;}return num; 
}
int my_fflush(MyFile* stream)
{if(stream->end > 0){//写到操作系统中write(stream->fileno, stream->buffer,stream->end);//内核级别的文件缓冲区刷新 fsync(stream->fileno); }return 0;
}
int my_fclose(MyFile* stream)
{my_fflush(stream);return close(stream->fileno);
}

main.c

#include"mystdio.h"    
#include<stdio.h>    
#include<string.h>    
#include<unistd.h>    
int main()    
{    MyFile* fp = my_fopen("log.txt","w");    if(fp==NULL)    {    perror("my_fopen");    return 1;    }    int cnt = 10;    const char *msg = "hello\nlinux";    while(cnt--)    {    my_fwrite(msg,strlen(msg),fp);    sleep(1);    }    my_fclose(fp);    return 0;                                                    
}

谢谢大家观看!!!! 

这篇关于Linux——文件缓冲区与模拟实现stdio.h的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/800023

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代