Pandas中的五种数据查询方法--【数值,列表,区间,条件,函数查询】

本文主要是介绍Pandas中的五种数据查询方法--【数值,列表,区间,条件,函数查询】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas查询数据

Pandas查询数据的几种方法

1.df.loc方法,根据行、列的标签值查询

2. df.iloc方法,根据行、列的数字位置查询

3. df.where方法

4. df.query方法

.loc既能查询,又能覆盖写入,强烈推荐!

Pandas使用df.loc查询数据的方法

1.使用单个label值查询数据

2.使用值列表批量查询

3.使用数值区间进行范围查询

4.使用条件表达式查询

5.调用函数查询

·以上查询方法,既适用于行,也适用于列·注意观察降维dataFrame>Series>值

import pandas as pd

1、读取数据

北京2018年全年天气预报

df=pd.read_csv('./datas/beijing_tianqi/beijing_tianqi_2018.csv',index_col='ymd')
df.head()
df.index

设置索引为日期,方便按日期筛选
inplace=True 表示直接在原存储空间上进行更改,不是重新开辟一块空间进行更改
 

#设置索引为日期,方便按日期筛选
#inplace=True 表示直接在原存储空间上进行更改,不是重新开辟一块空间进行更改
df.set_index('ymd',inplace=True)
df.head()

替换掉温度后的℃
其实还是使用切片操作,首先筛选出所有的行,在筛选出yWendu中一列,带着类型replace修改完之后,在对修改后的类型进行转换 

df.loc[:,'bWendu']=df['bWendu'].str.replace('℃','').astype('int32')
df.loc[:,'yWendu']=df['yWendu'].str.replace('℃','').astype('int32')
df.head()
df.dtypes

 值得注意的是:

AttributeError: Can only use .str accessor with string values!这种错误一般都是修改完之后了,不能在进行修改,说明已经修改过了

1、使用单个label值查询数据¶

行或列,都可以只传入单个值,实现精确匹配

查询一个单元格,只会返回一个数字值

#查询一个单元格,只会返回一个数字值
df.loc['2018-01-01','bWendu']

对于列的筛选,会产生一列,得到一个Series

#对于列的筛选,会产生一列,得到一个Series
df.loc['2018-01-01',['bWendu','yWendu']]

2、使用值列表批量查询 

得到Series

#得到Series
df.loc[['2018-01-02','2018-01-03','2018-01-04'],'bWendu']

得到DataFrame

#得到DataFrame
df.loc[['2018-01-02','2018-01-03','2018-01-04'],['bWendu','yWendu']]

 

3、使用数值区间进行范围查询

注意:区间既包括开始,也包括结束

行index按区间,切片操作的时候不用加双【】

列index按区间

行和列都按区间查询

#行index按区间,切片操作的时候不用加双【】
df.loc['2018-01-03':'2018-01-05','bWendu']
#列index按区间
df.loc['2018-01-03','bWendu':'fengxiang']
#行和列都按区间查询
df.loc['2018-01-03':'2018-01-05','bWendu':'fengxiang']

 

4、使用条件表达式查询¶

bool列表的长度等于行数或者列数

简单条件查询,最低温度低于-10度的列表

#简单条件查询,最低温度低于-10度的列表
df.loc[df['yWendu']<-10,:]

观察这里的boolean条件

#观察这里的boolean条件
df['yWendu']<-10

 

复杂条件查询,查完美天气

注意,组合条件&符号合并,每个条件判断都得带括号

查询最高温度小于30度,最低温度大于15度,晴天,天气为优的数据

#查询最高温度小于30度,最低温度大于15度,晴天,天气为优的数据
df.loc[(df['bWendu']<=30) & (df['yWendu']>=15) & (df['tianqi']=='晴') & (df['aqiLevel']==1),:]

观察这里boolean的条件

#观察这里boolean的条件
(df['bWendu']<=30) & (df['yWendu']>=15) & (df['tianqi']=='晴') & (df['aqiLevel']==1)

 5、调用函数查询

直接写lambda表达式

# 直接写lambda表达式
df.loc[lambda df :(df['bWendu']<=30)&(df['yWendu']>=15),:]

直接编写函数,查询9月份,空气质量好的数据

#直接编写函数,查询9月份,空气质量好的数据
def query_mydata(df):return df.index.str.startswith('2018-09')&df['aqiLevel']==1
df.loc[query_mydata]

 

 

注意:

函数式编程的本质:函数自身可以像变量一样传递

这篇关于Pandas中的五种数据查询方法--【数值,列表,区间,条件,函数查询】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799775

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程