代码随想录算法训练营Day55 | 583.两个字符串的删除操作、72.编辑距离

本文主要是介绍代码随想录算法训练营Day55 | 583.两个字符串的删除操作、72.编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

583.两个字符串的删除操作

最开始想到的是基于最长公共子序列的写法:删除公共子序列以外的字符,两个字符串就相同了

int minDistance0(string word1, string word2) {int n = word1.size();int m = word2.size();vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));for (int i = 1; i <= n; ++i) {for (int j = 1; j <= m; ++j) {if (word1[i - 1] == word2[j - 1])dp[i][j] = dp[i - 1][j - 1] + 1;elsedp[i][j] = std::max(dp[i][j - 1], dp[i - 1][j]); }}// 删除最长公共子序列以外的字符return n + m - 2 * dp[n][m];
}

 另一种基于题意定义DP数组的写法:

题目求需要进行删除的最小操作数,那么就将DP数组定义为目前的最小删除次数

1、DP数组定义: dp[i][j] 表示以word2[j - 1] 为结尾的子串和 word1[i - 1] 为结尾的子串达到相同需要的最小删除操作次数

2、DP数组初始化:dp[0][0]初始化为0,其余首列与首行元素初始化为i / j(有 i / j 个字符的字符串与一个空字符串达到相同需要进行 i / j 次删除操作)

3、递推公式

        · 当word1[i - 1] == word2[j - 1]时,不需要进行删除操作:

                        dp[i][j] = dp[i - 1][j - 1]

        · 当word1[i - 1] != word2[j - 1]时,dp[i][j]可以由三个方向取最小转移得到:

                方向1——dp[i][j - 1],在此基础上删除 word1[i - 1]

                方向2——dp[i - 1][j],在此基础上删除 word2[j - 1]

                方向3——dp[i - 1][j - 1],在此基础上删除 word1[i - 1] 和 word2[j - 1]

            最后的递推公式:dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i][j - 1] + 1, dp[i - 1][j] + 1))

4、遍历顺序:i 依赖 i - 1,j 依赖 j - 1,所以从左向右从上向下遍历

int minDistance(string word1, string word2) {// dp[i][j]表示达到相同需要的最小删除操作次数vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));// 除dp[0][0]外,dp[i][0]和dp[0][j]初始化为i/jfor (int i = 1; i <= word1.size(); ++i)dp[i][0] = i;for (int j = 1; j <= word2.size(); ++j)dp[0][j] = j;for (int i = 1; i <= word1.size(); ++i) {for (int j = 1; j <= word2.size(); ++j) {if (word1[i - 1] == word2[j - 1])dp[i][j] = dp[i - 1][j - 1];// 三个方向取最小值elsedp[i][j] = std::min(dp[i - 1][j - 1] + 2, std::min(dp[i][j - 1] + 1, dp[i - 1][j] + 1));}}return dp[word1.size()][word2.size()];
}

72.编辑距离

这题仍然是根据题意定义DP数组,重点是理清楚删除、替换、插入三种操作的状态转移

1、DP数组定义: dp[i][j] 表示以 word1[i - 1] 为结尾的子串想要达到与 word2[j - 1] 为结尾的子串相同,需要的最小编辑次数

2、DP数组初始化:dp[0][0]初始化为0,其余首列与首行元素初始化为i / j(有 i / j 个字符的字符串与一个空字符串达到相同需要进行 i / j 次删除操作)

3、递推公式

        · 当word1[i - 1] == word2[j - 1]时,不需要进行编辑操作:

                        dp[i][j] = dp[i - 1][j - 1]

        · 当word1[i - 1] != word2[j - 1]时,dp[i][j]可以由三种操作取最小转移得到:

                删除 —— 将word[i - 1]删除,在 dp[i - 1][j] 的基础上+1,

                替换 —— 将 word1[i - 1] 替换为 word2[j - 1],在 dp[i - 1][i - 1] 的基础上+1

                插入 —— 将一个等于 word2[j - 1] 的值插在原先word1[i - 1]的位置上,在 dp[i][j - 1] 的基础上+1

            最后的递推公式:dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i - 1][j - 1] + 1, dp[i][j - 1] + 1))

4、遍历顺序:i 依赖 i - 1,j 依赖 j - 1,所以从左向右从上向下遍历

int minDistance(string word1, string word2) {// dp[i][j]表示达到相同需要的最小编辑操作次数vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));for (int i = 1; i <= word1.size(); ++i)dp[i][0] = i;for (int j = 1; j <= word2.size(); ++j)dp[0][j] = j;for (int i = 1; i <= word1.size(); ++i) {for (int j = 1; j <= word2.size(); ++j) {if (word1[i - 1] == word2[j - 1])dp[i][j] = dp[i - 1][j - 1];else {// 删除:dp[i - 1][j] + 1		(在dp[i - 1][j] + 1的基础上删除word[i - 1])// 替换:dp[i - 1][j - 1] + 1	(在dp[i - 1][i - 1]的基础上将word1[i - 1]替换为word2[j - 1])// 插入:dp[i][j - 1] + 1		(在dp[i][j - 1]的基础上插入一个等于word2[j - 1]的值)dp[i][j] = std::min(dp[i - 1][j] + 1, std::min(dp[i - 1][j - 1] + 1, dp[i][j - 1] + 1));}}}return dp[word1.size()][word2.size()];
}

编辑距离总结

这类题目做多了还是能找到些套路的:

1、DP数组定义

        · DP数组的定义一般是题目要求什么就定义成什么,

        · dp[i][j] 一般表示的是以 word1[i - 1] 为结尾的子串和 word2[j - 1] 为结尾的子串

2、DP数组初始化:结合题意,一般首行和首列的初始化最为重要

3、递推公式

        分析状态转移可以分为“基础”“新增”两部分:

        · 基础:继承之前的状态,如果当前值匹配一般只要进行这步操作

        · 新增:在之前状态的基础上增加操作时新增的值,如果当前值不匹配一般需要额外进行这步操作

4、遍历顺序:结合题意,一般是 i 依赖 i - 1,j 依赖 j - 1,所以大部分情况是从左向右从上向下遍历

这篇关于代码随想录算法训练营Day55 | 583.两个字符串的删除操作、72.编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798813

相关文章

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum