Python数值微积分,摆脱被高数支配的恐惧

2024-03-11 09:12

本文主要是介绍Python数值微积分,摆脱被高数支配的恐惧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 差分和累加
    • 积分
    • 多重积分

Python科学计算:数组💯数据生成

差分和累加

微积分是现代科学最基础的数学工具,但其应用对象往往是连续函数,而其在非连续函数的类比,便是差分与累加。在【numpy】中,可通过【diff】和【cumsum】来完成这两项任务。

y = sin ⁡ 2 x y=\sin 2x y=sin2x为例,其导数为 d y d x = 2 cos ⁡ x \frac{\text dy}{\text dx}=2\cos x dxdy=2cosx,积分则为 ∫ y d x = − 1 2 cos ⁡ 2 x + C \int y\text dx=-\frac{1}{2}\cos 2x+C ydx=21cos2x+C C C C是某个常数。这三个函数的曲线分别为

在这里插入图片描述

绘图函数如下

import matplotlib.pyplot as plt
import numpy as np
dx = 0.1
x = np.arange(100)*dx
y = np.sin(2*x)
plt.plot(x, y, label="y=sin(2x)")
plt.plot(x[1:], np.diff(y)/dx, label="diff(y)/dx")
plt.plot(x, np.cumsum(y)*dx, label="cumsum(y)*dx")plt.grid()
plt.legend()
plt.show()

其中,diff用于求差分,其输入参数除了待差分数组之外,还有n和axis,比较常用,n为差分的阶数,默认为1;axis用于高维数组中,表示计算的方向,默认-1表示最后一个轴。

cumsum用于累加,对于输入数组 y y y,其返回数组为 S S S,则 S n = ∑ i = 0 n y i S_n=\sum_{i=0}^ny_i Sn=i=0nyi

无论diff还是cumsum,均只针对输入数组进行操作,而不会考虑微积分中至关重要的 d x \text dx dx,所以绘图时对这一部分进行了补全。

此外,由于差分的实质是后一个减去前一个,所以元素个数必然会减少,所以在绘图时,令 x x x从1开始。这是一个在编程时很容易出错的地方,故而numpy还提供了另一个函数【ediff1d】,这是一个只做一阶差分计算的函数,但提供了to_endto_begin参数,分别用于在diff计算结果的后面或前面补充数值。

积分

积分一开始被引入教材,是以梯形求和为示例的:将函数 y = f ( x ) y=f(x) y=f(x)无限分割,然后对相邻两点取平均,再乘以 d x \text dx dx之后进行求和,即 lim ⁡ δ x → 0 ∑ y i + y i + 1 2 δ x \lim_{\delta_x\to0}\sum \frac{y_{i}+y_{i+1}}{2}\delta_x limδx02yi+yi+1δx

【trapz】可实现上述过程,但要求 y y y是一个给定的数组,且 δ x \delta_x δx为1。很显然,这个过程只能称之为梯形求和,毕竟积分的要求是 δ x → 0 \delta_x\to0 δx0 1 1 1 0 0 0有着本质的区别。

为此,【scipy.intergrate】作为顾名思义的积分模块,提供了真真正正的积分。为了行文简洁,后文将此模块简称为【si】模块。

【quad】是【si】中最常用的积分函数,以函数 x 2 x^2 x2 sin ⁡ x \sin x sinx为例,其使用流程如下

import numpy as np
from scipy.integrate import quadfunc = lambda x: x**2
quad(func, 0, 4)        # (21.33, 2.37-13)
quad(np.sin, 0, np.pi)  # (2.0, 2.22e-14)

其中,quad共输入了三个参数,分别是待积分函数、积分下界与积分上界,其返回值有二,分别为积分结果和计算误差。

这两个测试函数的解析形式如下,可见计算结果基本温和。

∫ 0 4 x 2 d x = 1 3 x 3 ∣ 0 4 = 64 3 ≈ 21.3 ∫ 0 π sin ⁡ x d x = − cos ⁡ x ∣ 0 π = 2 \int_0^4 x^2\text dx=\frac{1}{3}x^3\big|^4_0=\frac{64}{3}\approx 21.3\\ \int^\pi_0\sin x\text dx=-\cos x\big|^\pi_0=2 04x2dx=31x3 04=36421.30πsinxdx=cosx 0π=2

除了三个必须输入的参数之外,下列参数也较为常用

  • argsfunc函数中,除待求积分参数之外的其他参数,默认为空
  • epsabs, epsrel 分别为绝对和相对误差,默认为 1.49 × 1 0 − 8 1.49\times10^{-8} 1.49×108
  • limit 自适应算法中子区间的个数,默认50
  • points 断点位置,默认为None
  • weight, wvar 定义域区间内的权重类型和权重,默认为None
  • wopts, maxp1 切比雪夫矩及其上限,默认为None和50
  • full_output=0, limlst=50, complex_func=False

其中,weightwvar参数的具体取值如下。

weightwvar函数
“cos” w w w cos ⁡ w x \cos wx coswx
“sin” w w w sin ⁡ w x \sin wx sinwx
“alg” α , β \alpha, \beta α,β g ( x ) g(x) g(x)
“alg-loga” α , β \alpha, \beta α,β g ( x ) log ⁡ ( x − a ) g(x)\log(x-a) g(x)log(xa)
“alg-logb” α , β \alpha, \beta α,β g ( x ) log ⁡ ( b − x ) g(x)\log(b-x) g(x)log(bx)
“alg-log” α , β \alpha, \beta α,β g ( x ) log ⁡ ( x − a ) log ⁡ ( b − x ) g(x)\log(x-a)\log(b-x) g(x)log(xa)log(bx)
“cauchy” c c c 1 x − c \frac{1}{x-c} xc1

其中, g ( x ) = ( x − a ) α ∗ ( b − x ) β g(x)=(x-a)^\alpha*(b-x)^\beta g(x)=(xa)α(bx)β

func f ( x ) = x f(x)=x f(x)=x,若weight参数为cos,而wvar取值为 w w w,则实际计算的积分表达式为

∫ a b cos ⁡ w f ( x ) d x \int_a^b\cos wf(x)\text dx abcoswf(x)dx

示例如下

func = lambda x : x
quad(func, 0, np.pi)    # (4.935, 5.478e-14)
quad(func, 0, np.pi, weight='cos', wvar=1)  # (-2.00, 1.926e-13)

多重积分

在【si】中,除了quad之外,还提供了二重、三重以及N重积分的API,分别是【dblquad, tplquad, nquad】,三者所需参数如下

MIN = 1.49e-08
dblquad(func, a, b, gfun, hfun, args=(), epsabs=MIN, epsrel=MIN)
tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=MIN, epsrel=MIN)
nquad(func, ranges, args=None, opts=None, full_output=False)

dblquad

以二重积分为例,其对应的问题可表述为下式

∫ a b ∫ y g ( x ) y h ( x ) f ( y , x ) d x d y \int^b_a\int^{y_h(x)}_{y_g(x)} f(y,x)\text dx\text dy abyg(x)yh(x)f(y,x)dxdy

在函数dblquad中,func对应 f ( y , x ) f(y,x) f(y,x),a,b对那个上式的 a , b a,b a,b,gfun, hfun对应上式的 y g ( x ) , y h ( x ) y_g(x), y_h(x) yg(x),yh(x)

接下来求解下面的积分

∫ 1 2 ∫ x 2 x 3 x y d y d x = ∫ 1 2 1 2 ( x y 2 ) ∣ x 2 x 3 d x = ∫ 1 2 1 2 ( x 7 − x 5 ) d x = 1 2 ( 1 8 x 8 − 1 6 x 6 ) ∣ 1 2 = 1 2 ( 2 8 8 − 2 6 6 ) + 1 48 = 513 48 \begin{aligned} &\int^2_1\int^{x^3}_{x^2} xy\text dy\text dx\\ =&\int^2_1 \frac{1}{2}(xy^2)\vert^{x^3}_{x^2}\text dx=&\int^2_1 \frac{1}{2}(x^7-x^5)\text dx\\ =&\frac1 2(\frac1 8x^8-\frac1 6x^6)\vert^2_1=&\frac1 2(\frac{2^8}{8}-\frac{2^6}{6})+\frac{1}{48}\\ =&\frac{513}{48} \end{aligned} ===12x2x3xydydx1221(xy2)x2x3dx=21(81x861x6)12=485131221(x7x5)dx21(828626)+481

Python代码如下

from scipy.integrate import dblquad
func = lambda x,y : x*y
gf = lambda x: x**2
hf = lambda x: x**3
dblquad(func, 1, 2, gf, hf)
# (10.6875, 5.284867210146833e-13)

计算结果与 513 48 \frac{513}{48} 48513一致。

与二重积分相比,三重积分tplquad只是多了一组qfun和rfun,相当于z处于qfun(x,y)和rfun(x,y)之间。

【nquad】貌似不支持回调函数,其参数ranges是元组的列表,每个元组代表对应未知量的取值范围。若将其映射为三重积分函数,则ranges可表示为 ( ( a 1 , b 1 ) , ( a 2 , b 2 ) , ⋯ , ( a n , b n ) ) ((a_1,b_1), (a_2, b_2),\cdots,(a_n, b_n)) ((a1,b1),(a2,b2),,(an,bn))

下面仍以函数func为例,用nquad得出结果

from scipy.integrate import nquad
nquad(func, [[1,2], [3, 4]])
#(0.39276170758930756, 4.91851540406507e-15)

这篇关于Python数值微积分,摆脱被高数支配的恐惧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797368

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统