opencv dnn模块 示例(25) 目标检测 object_detection 之 yolov9

2024-03-11 08:44

本文主要是介绍opencv dnn模块 示例(25) 目标检测 object_detection 之 yolov9,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1、YOLOv9 介绍
  • 2、测试
    • 2.1、官方Python测试
    • 2.2、Opencv dnn测试
      • 2.2.1、导出onnx模型
      • 2.2.2、测试代码
    • 2.3、测试统计

1、YOLOv9 介绍

YOLOv9 是 YOLOv7 研究团队推出的最新目标检测网络,它是 YOLO(You Only Look Once)系列的最新迭代。YOLOv9 在设计上旨在解决深度学习中信息瓶颈问题,并提高模型在不同任务上的准确性和参数效率。
在这里插入图片描述

  • Programmable Gradient Information (PGI):YOLOv9 引入了可编程梯度信息(PGI)的概念,这是一种新的辅助监督框架,用于生成可靠的梯度信息,以便在训练过程中更新网络权重。PGI 通过辅助可逆分支来解决深度网络加深导致的问题,并提供完整的输入信息以计算目标函数。

  • Generalized Efficient Layer Aggregation Network (GELAN):YOLOv9 设计了一种新的轻量级网络架构 GELAN,它基于梯度路径规划。GELAN 通过使用传统的卷积操作,实现了比基于深度可分离卷积的最先进方法更好的参数利用率。

  • 高效的性能:YOLOv9 在 MS COCO 数据集上的目标检测任务中取得了优异的性能,超越了所有先前的实时目标检测方法。它在准确性、参数利用率和计算效率方面都显示出了显著的优势

  • 适用于不同规模的模型:PGI 可以应用于从轻量级到大型的多种模型,并且可以用于获得完整的信息,使得从头开始训练的模型能够达到或超越使用大型数据集预训练的最先进的模型。

  • 改进的网络架构:YOLOv9 在网络架构上进行了改进,包括简化下采样模块和优化无锚点预测头。这些改进有助于提高模型的效率和准确性。训练策略:YOLOv9 遵循了 YOLOv7 AF 的训练设置,包括使用 SGD 优化器进行 500 个周期的训练,并在训练过程中采用了线性预热和衰减策略。

  • 数据增强:YOLOv9 在训练过程中使用了多种数据增强技术,如 HSV 饱和度、值增强、平移增强、尺度增强和马赛克增强,以提高模型的泛化能力。

总的来说,YOLOv9 通过其创新的 PGI 和 GELAN 架构,以及对现有训练策略的改进,提供了一种高效且准确的目标检测解决方案,适用于各种规模的模型和不同的应用场景。

2、测试

使用Pip在一个Python>=3.8环境中安装ultralytics包,此环境还需包含PyTorch>=1.7。这也会安装所有必要的依赖项。

git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
pip install -r requirements.txt

提供的cooc预训练模型性能如下:

ModelTest SizeAPvalAP50valAP75valParam.FLOPs
YOLOv9-N (dev)64038.3%53.1%41.3%2.0M7.7G
YOLOv9-S64046.8%63.4%50.7%7.1M26.4G
YOLOv9-M64051.4%68.1%56.1%20.0M76.3G
YOLOv9-C64053.0%70.2%57.8%25.3M102.1G
YOLOv9-E64055.6%72.8%60.6%57.3M189.0G

2.1、官方Python测试

python detect.py --weights yolov9-c.pt --data data\coco.yaml --sources bus.jpg

注意,这里可能出现一个错误 fix solving AttributeError: 'list' object has no attribute 'device' in detect.py,在官方issues中可以找到解决方案,需要在将 detect.py 文件下面代码调整为

        # NMSwith dt[2]:pred = pred[0][1] if isinstance(pred[0], list) else pred[0]pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)# Second-stage classifier (optional)

之后重新运行正常。

以预训练的 yolov9-c.pt 模型为例测试:
CPU 0.8ms pre-process, 1438.7ms inference, 2.0ms NMS per image
GPU 0.7ms pre-process, 41.3ms inference, 1.4ms NMS per image

以预训练的简化模型 yolov9-c-converted.pt 为例测试:
CPU 0.9ms pre-process, 704.8ms inference, 1.6ms NMS per image
GPU 0.4ms pre-process, 22.9ms inference, 1.5ms NMS per image

2.2、Opencv dnn测试

2.2.1、导出onnx模型

按照惯例将pt转换为onnx模型,

python export.py --weights yolov9-c.pt --include onnx

输出如下:

(yolo_pytorch) E:\DeepLearning\yolov9>python export.py --weights yolov9-c.pt --include onnx
export: data=E:\DeepLearning\yolov9\data\coco.yaml, weights=['yolov9-c.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['onnx']
YOLOv5  v0.1-30-ga8f43f3 Python-3.9.16 torch-1.13.1+cu117 CPUFusing layers...
Model summary: 604 layers, 50880768 parameters, 0 gradients, 237.6 GFLOPsPyTorch: starting from yolov9-c.pt with output shape (1, 84, 8400) (98.4 MB)ONNX: starting export with onnx 1.14.0...
ONNX: export success  9.6s, saved as yolov9-c.onnx (194.6 MB)Export complete (14.7s)
Results saved to E:\DeepLearning\yolov9
Detect:          python detect.py --weights yolov9-c.onnx
Validate:        python val.py --weights yolov9-c.onnx
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov9-c.onnx')
Visualize:       https://netron.app

2.2.2、测试代码

测试代码和 yolov8一样:

2.3、测试统计

这里仅给出 yolov9-c-converted 的测试数据

python (CPU):704ms
python (GPU):22ms

opencv dnn(CPU):760ms
opencv dnn(GPU):27ms (使用opencv4.8相同的代码,gpu版本结果异常,cpu正常)

以下包含 预处理+推理+后处理:
openvino(CPU): 316ms
onnxruntime(GPU): 29ms
TensorRT:19ms

这篇关于opencv dnn模块 示例(25) 目标检测 object_detection 之 yolov9的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797296

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

SpringBoot 中 CommandLineRunner的作用示例详解

《SpringBoot中CommandLineRunner的作用示例详解》SpringBoot提供的一种简单的实现方案就是添加一个model并实现CommandLineRunner接口,实现功能的... 目录1、CommandLineRunnerSpringBoot中CommandLineRunner的作用

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主