OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像

本文主要是介绍OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在OpenCV中,可以对于图片进行算法运算。我们知道,图像的本质其实就是矩阵,因此对于图像的算数运算本质上就是对于矩阵的算术运算。在OpenCV可以对图像进行算术运算的操作有加、减、乘、除等操作。

图像的加、减、乘、除操作

两张图像可以进行算术运算操作,即对两图像的矩阵进行加减操作。例如,文件夹中有两张图片:

现在想把这两张图像加起来,首先先获取两张图片的行数和列数:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg1=cv2.imread(r'D:\Photo\1.jpeg')
img2=cv2.imread(r'D:\Photo\2.jpeg')
print(img1.shape)
print(img2.shape)

运行结果如下所示:

(500, 500, 3)
(500, 667, 3)

 可以看到两张图片的行数相等,但是列数第二张图片的列数较大,因此在如果两个图像要进行算术运算操作,需要行数和列数需要保持一致,因此只能将图像截取。

(1)将上面两张图片进行相加操作:

import cv2
import matplotlib.pyplot as plt
import numpy as npimage_dog=cv2.imread(r'D:\Photo\1.jpeg')
image_cat=cv2.imread(r'D:\Photo\2.jpeg')
image_cat=cv2.resize(image_cat,(500,500))
image_new=image_cat+image_dog
cv2.imshow('image_new',image_new)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以看到,图片的所运行出来的结果就是每一个像素进行叠加,运行出来的结果为上图所示。

(2)同样,也可以进行相减的操作,只需要将上面代码中的image_new=image_cat-image_dog即可。即为:

image_new=image_cat-image_dog

运行结果如下所示:

(3)同样,也可以进行相乘的操作,只需要将上面代码中的image_new=image_cat*image_dog即可。

image_new=image_cat*image_dog

运行结果如下所示:

由于相乘结果数值相差较大,因此所得到的结果比较混乱。 

(4)图像的算数操作同样可以对数进行操作,例如将图像所对应的矩阵里的数全部除以2,代码为:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
res=img_dog//2
plt.imshow(res)

运行结果为:

通过图片可以看出图片整体变暗了,原因是图片对应的矩阵的值变为原来的一半。 

图片的叠加

(1)图片不可以这样简单地进行算数运算,同时也可以进行叠加(即为图像的加权融合),在OpenCV使用cv2.addWeigthed()进行叠加。在cv2.addWeighted()中,至少需要输入四个参数,即为第一个需要加权融合的图片,第一个图片所占的权重,第二个需要加权融合的图片,第二个图片所占的权重,例如:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
img_cat=cv2.imread(r'D:\Photo\2.jpeg')
img_cat=cv2.resize(img_cat,(500,500))
res=cv2.addWeighted(img_cat,0.5,img_dog,0.5,0)
plt.imshow(res)

运行效果如下所示:

(2)此时两张图片的权重各占0.5,如果修改权重,将image_cat改为0.7,image_dog改为0.3,那么只需修改代码:

res=cv2.addWeighted(img_cat,0.7,img_dog,0.3,0)

运行效果为:

可以看到,当image_cat为0.7,image_dog为0.3的时候,可以看到猫的图片占据了主导地位。

(3)需要说明的是,图片的叠加可以用图片的算术操作完成,例如加权融合的权重为0.5时,下面两句代码效果等效:

res=cv2.addWeighted(img_1,0.5,img_2,0.5,0)
res=img_1//2+img_1//2

用上面的例子进行验证:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
img_cat=cv2.imread(r'D:\Photo\2.jpeg')
img_cat=cv2.resize(img_cat,(500,500))
res1=cv2.addWeighted(img_cat,0.5,img_dog,0.5,0)
res2=img_cat//2+img_dog//2
cv2.imshow('res1',res1)
cv2.imshow('res2',res2)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行效果如下所示:

可以看到完全相同,所以对图片进行融合的时候两种方法都可以。

多通道图像拆分为多个单通道图像

在OpenCV中利用cv2.split()将多个颜色通道图像(例如BGR格式的彩色图像)拆分为多个单独的灰色图像,每个灰度图像代表原图像的一个颜色通道。

注:split()函数需要完成三个任务:

  • 通道分离:它可以将一个三通道的BGR图像分离成三个单通道的灰度图像,分别是蓝色、绿色和红色通道。
  • 数据结构:split()函数可以接受两种类型的输出参数,一种是Mat数组,另一种是std::vector<Mat>。在Python中,通常使用numpy数组来接收分离后的通道。
  • 使用方式:当你有一个Mat对象表示的图像时,可以调用split()函数并传入该对象以及一个用于存放结果的数组或向量。这样,原图像的每个通道就会被提取出来并存储在指定的位置。

例如:

import cv2
import matplotlib.pyplot as plt
import numpy as np#颜色通道提取
img=cv2.imread(r'D:\Photo\1.jpeg')
b,g,r=cv2.split(img)
print('b通道\n')
print(b)
print('g通道\n')
print(g)
print('r通道\n')
print(r)

 运行结果为:

b通道[[186 186 186 ...  30  41  34][186 186 186 ...  39  46  36][186 186 186 ...  39  41  29]...[160 161 165 ...  37  59 101][160 161 163 ...  42  39  62][154 155 157 ...  62  40  52]]
g通道[[118 118 118 ...  51  61  54][118 118 118 ...  59  66  56][118 118 118 ...  59  61  49]...[177 178 181 ...  73  95 137][177 178 180 ...  76  72  96][171 172 173 ...  96  74  85]]
r通道[[ 70  70  70 ...  45  55  48][ 70  70  70 ...  53  60  51][ 70  70  70 ...  53  55  44]...[188 189 192 ...  81 103 145][188 189 191 ...  84  81 104][182 183 184 ... 104  82  93]]

通过上面结果可以看到一张RGB图像分成了三个通道,每个通道有不同的数据内容。而不同颜色通道的图片是什么样子的呢?下面我们分别展示B、G、R通道:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\1.jpeg')
#只保留R通道
cur_img1=img.copy()
cur_img1[:,:,0]=0
cur_img1[:,:,1]=0
#只保留G通道
cur_img2=img.copy()
cur_img2[:,:,0]=0
cur_img2[:,:,2]=0
#只保留B通道
cur_img3=img.copy()
cur_img3[:,:,1]=0
cur_img3[:,:,2]=0
cv2.imshow('R通道',cur_img1)
cv2.imshow('G通道',cur_img2)
cv2.imshow('B通道',cur_img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

上面通道所展示的结果是B通道、G通道、R通道所呈现的内容。

这篇关于OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797207

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,