【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测

2024-03-10 22:30

本文主要是介绍【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

​​

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

文章目录

使用 Python 进行 Covid-19 病例预测的机器学习项目

数据准备

数据可视化

使用 Python 预测未来 30 天的 Covid-19 病例


在本文中,我将向您介绍一个在接下来的 30 天内使用 Python 预测 Covid-19 病例的机器学习项目。这些类型的预测模型有助于准确预测流行病,这对于获取有关传染病可能传播和后果的信息至关重要。

政府和其他立法机构依靠这些机器学习预测模型和想法来提出新政策并评估应用政策的有效性。

使用 Python 进行 Covid-19 病例预测的机器学习项目

在接下来的 30 天内,我将通过导入必要的 Python 库和数据集来开始使用 Python 进行 Covid-19 病例预测的任务:

数据集1:

Kaggle: Your Home for Data Science

数据集2:

Kaggle: Your Home for Data Science

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as pxfrom fbprophet import Prophet
from sklearn.metrics import r2_scoreplt.style.use("ggplot")df0 = pd.read_csv("CONVENIENT_global_confirmed_cases.csv")
df1 = pd.read_csv("CONVENIENT_global_deaths.csv")

数据准备

现在下一步是数据准备,我将通过组合上述数据集来简单地准备新数据,然后我们将可视化数据的地理图以查看我们将要使用的内容:

world = pd.DataFrame({"Country":[],"Cases":[]})
world["Country"] = df0.iloc[:,1:].columns
cases = []
for i in world["Country"]:cases.append(pd.to_numeric(df0[i][1:]).sum())
world["Cases"]=casescountry_list=list(world["Country"].values)
idx = 0
for i in country_list:sayac = 0for j in i:if j==".":i = i[:sayac]country_list[idx]=ielif j=="(":i = i[:sayac-1]country_list[idx]=ielse:sayac += 1idx += 1
world["Country"]=country_list
world = world.groupby("Country")["Cases"].sum().reset_index()
world.head()
continent=pd.read_csv("continents2.csv")
continent["name"]=continent["name"].str.upper()
CountryCases
0Afghanistan45716.0
1Albania35600.0
2Algeria79110.0
3Andorra6534.0
4Angola14920.0

数据可视化

现在在这里我将准备三个可视化。一个将是地理可视化,以可视化 Covid-19 的全球传播。那么下一个可视化将是查看世界上每天发生的 Covid-19 病例。然后最后一个可视化将是查看世界上每天 Covid-19 的死亡病例。

现在让我们通过查看 Covid-19 的全球传播情况来开始数据可视化:

world["Cases Range"]=pd.cut(world["Cases"],[-150000,50000,200000,800000,1500000,15000000],labels=["U50K","50Kto200K","200Kto800K","800Kto1.5M","1.5M+"])
alpha =[]
for i in world["Country"].str.upper().values:if i == "BRUNEI":i="BRUNEI DARUSSALAM"elif  i=="US":i="UNITED STATES" if len(continent[continent["name"]==i]["alpha-3"].values)==0:alpha.append(np.nan)else:alpha.append(continent[continent["name"]==i]["alpha-3"].values[0])
world["Alpha3"]=alphafig = px.choropleth(world.dropna(),locations="Alpha3",color="Cases Range",projection="mercator",color_discrete_sequence=["white","khaki","yellow","orange","red"])
fig.update_geos(fitbounds="locations", visible=False)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

 现在让我们看看世界各地的日常案例:

count = []
for i in range(1,len(df0)):count.append(sum(pd.to_numeric(df0.iloc[i,1:].values)))df = pd.DataFrame()
df["Date"] = df0["Country/Region"][1:]
df["Cases"] = count
df=df.set_index("Date")count = []
for i in range(1,len(df1)):count.append(sum(pd.to_numeric(df1.iloc[i,1:].values)))df["Deaths"] = countdf.Cases.plot(title="Daily Covid19 Cases in World",marker=".",figsize=(10,5),label="daily cases")
df.Cases.rolling(window=5).mean().plot(figsize=(10,5),label="MA5")
plt.ylabel("Cases")
plt.legend()
plt.show()

 

 现在让我们来看看 Covid-19 的每日死亡病例:

df.Deaths.plot(title="Daily Covid19 Deaths in World",marker=".",figsize=(10,5),label="daily deaths")
df.Deaths.rolling(window=5).mean().plot(figsize=(10,5),label="MA5")
plt.ylabel("Deaths")
plt.legend()
plt.show()

 

使用 Python 预测未来 30 天的 Covid-19 病例

现在,我将使用 Facebook 先知模型在接下来的 30 天内使用 Python 进行 Covid-19 病例预测任务。Facebook 先知模型使用时间序列方法进行预测。 

让我们看看我们如何在接下来的 30 天内使用 Facebook 先知模型通过 Python 进行 Covid-19 病例预测:

class Fbprophet(object):def fit(self,data):self.data  = dataself.model = Prophet(weekly_seasonality=True,daily_seasonality=False,yearly_seasonality=False)self.model.fit(self.data)def forecast(self,periods,freq):self.future = self.model.make_future_dataframe(periods=periods,freq=freq)self.df_forecast = self.model.predict(self.future)def plot(self,xlabel="Years",ylabel="Values"):self.model.plot(self.df_forecast,xlabel=xlabel,ylabel=ylabel,figsize=(9,4))self.model.plot_components(self.df_forecast,figsize=(9,6))def R2(self):return r2_score(self.data.y, self.df_forecast.yhat[:len(df)])df_fb  = pd.DataFrame({"ds":[],"y":[]})
df_fb["ds"] = pd.to_datetime(df.index)
df_fb["y"]  = df.iloc[:,0].valuesmodel = Fbprophet()
model.fit(df_fb)
model.forecast(30,"D")
model.R2()forecast = model.df_forecast[["ds","yhat_lower","yhat_upper","yhat"]].tail(30).reset_index().set_index("ds").drop("index",axis=1)
forecast["yhat"].plot(marker=".",figsize=(10,5))
plt.fill_between(x=forecast.index, y1=forecast["yhat_lower"], y2=forecast["yhat_upper"],color="gray")
plt.legend(["forecast","Bound"],loc="upper left")
plt.title("Forecasting of Next 30 Days Cases")
plt.show()

 

我希望您喜欢这篇关于使用 Python 编程语言预测未来 30 天 Covid-19 病例的文章。请随时在下面的评论部分提出您宝贵的问题。

这篇关于【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795719

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV