2021-10-5 239. 滑动窗口最大值(单调队列)

2024-03-10 21:08

本文主要是介绍2021-10-5 239. 滑动窗口最大值(单调队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:

题目:
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。最终返回滑动窗口中的最大值。

示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:

滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       31 [3  -1  -3] 5  3  6  7       31  3 [-1  -3  5] 3  6  7       51  3  -1 [-3  5  3] 6  7       51  3  -1  -3 [5  3  6] 7       61  3  -1  -3  5 [3  6  7]      7

示例 2:
输入:nums = [1], k = 1
输出:[1]
示例 3:
输入:nums = [1,-1], k = 1
输出:[1,-1]
示例 4:
输入:nums = [9,11], k = 2
输出:[11]
示例 5:
输入:nums = [4,-2], k = 2
输出:[4]

提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length

题解:
单调队列 思路及算法

由于我们需要求出的是滑动窗口的最大值,如果当前的滑动窗口中有两个元素 nums[i] 和 nums[j] ,其中 i 在 j 的左侧(i < j),并且nums[i]≤nums[j]),那么会发生什么呢?

当滑动窗口向右移动时,只要 nums[i] 还在窗口中,那么 nums[j] 一定也还在窗口中,这是 nums[i] 在 nums[j] 的左侧所保证的。因此,由于 nums[j] 的存在,nums[i] 一定不会是滑动窗口中的最大值了,我们可以将 nums[i] 永久地移除。

因此我们可以使用一个队列存储所有还没有被移除的元素。在队列中,这些元素按照从小到大的顺序被存储,并且它们是严格单调递减的。

当滑动窗口向右移动时,我们需要把一个新的元素放入队列中。为了保持队列的性质,我们会不断地将新的元素与队尾的元素相比较,如果前者大于等于后者,那么队尾的元素就可以被永久地移除,我们将其弹出队列。我们需要不断地进行此项操作,直到队列为空或者新的元素小于队尾的元素。

队列中元素的是严格单调递减的,此时队首元素就是滑动窗口中的最大值,该最大值可能在滑动窗口左边界的最左侧,并且随着窗口向右移动,它永远不可能出现在滑动窗口中了。因此我们还需要判断是否要从队首弹出元素。

为了可以同时弹出队首和队尾的元素,我们需要使用双端队列。满足这种单调性的双端队列一般称作「单调队列」

复杂度分析
时间复杂度:O(n),其中 n 是数组 nums 的长度。每一个元素恰好被放入队列一次,并且最多被弹出队列一次,因此时间复杂度为 O(n)。

空间复杂度:O(k)。「不断从队首弹出元素」保证了队列中最多不会有超过 k+1 个元素,因此队列使用的空间为 O(k)。

class Solution {
public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {deque<int> deq;vector<int> result;if(k>nums.size()){return  result;}for(int i=0;i<k;i++){while(!deq.empty()&&deq.back()<nums[i]){deq.pop_back();}deq.push_back(nums[i]);}result.push_back(deq.front());for(int i=k;i<nums.size();i++){//弹出滑动窗口第一个元素,对单调队列做相应的操作if(!deq.empty()&&deq.front()==nums[i-k]){deq.pop_front();}//在滑动窗口中增加一个元素,对单调队列做相应的操作while(!deq.empty()&&deq.back()<nums[i]){deq.pop_back();}deq.push_back(nums[i]);result.push_back(deq.front());}return result;}
};

这篇关于2021-10-5 239. 滑动窗口最大值(单调队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795507

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组