机器学习-pytorch1(持续更新)

2024-03-10 08:28

本文主要是介绍机器学习-pytorch1(持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一节我们学习了机器学习的线性模型和非线性模型的机器学习基础知识,这一节主要将公式变为代码

代码编写网站:https://colab.research.google.com/drive

学习课程链接:ML 2022 Spring

1、Load Data(读取数据)

这需要用到pytorch里面的两个函数Dataset和Dataloader

torch.utils.data.Dataset
torch.utils.data.DataLoader

Dataset:是用来存储数据样本和期望值

dataset = MyDataset(file)

Dataloader:批量对数据进行分组,启用多处理

dataloader = DataLoader(dataset, batch_size, shuffle=True)

// 其中对于shuffle的取值,True表示训练,false表示测试

关于Dataset和Dataloader的关系如下:

 

ML 2022 Spring为图片来源

我们读取完数据,是不是想知道我们的数据长什么样子呢?(我们称数据为Tensors)

首先,它可能是一个一维数据,比如一个音频、一个温度

其次,还可能是一个二维数据,比如一张二值图像

最后,还可能是一个三维数据,比如一个彩色的图像

又有问题了,我们怎么通过编程得到我们图像的大小?

可以使用pytorch里面的shape()函数

我们怎么通过编程创造我们的数据呢?

eg:
x = torch.tensor([[1,-1],[-1,1]])
x = torch.from_numpy(np.array([[1,-1],[-1,1]]))
全0或全1数据
x = torch.zeros([2,2])    # 2*2的全0数据
x = torch.ones([1,2,5])    # 1*2*5的全1数据

 其次,还支持矩阵的运算

Addition:z = x + y
Subtraction:z = x - y
Power:y = x.pow(2)
Summation:y = x.sum()
Mean:y = x.mean()
维度转换:x = x.transpose(dim0,dim1)
消除维度:x = x.squeeze(dim)
增加维度:x = x.unsqueeze(dim)
组合:w = torch.cat([x,y,z],dim=1)

拥有不同的数据类型:

使用.to()可以切换到不同的设备:

CPU: x = x.to('cpu')
GPU: x = x.to('cuda')

 这里就又涉及到如何检查你的GPU了?可以使用以下语句检查你的计算机是否有GPU:

torch.cuda.is_available()

如何计算梯度?

 // 注意矩阵一定要使用小数点

2、Define Neural Network(训练和测试神经网络)

torch.nn.Module

线性: 

 非线性:

Sigmoid Activation:nn.Sigmoid()

ReLU Activation:nn.ReLU()

下面我根据所学的知识构建我自己的神经网络:

3、Loss Function(损失函数) 

x = torch.nn.MSELoss    # 对于回归任务
x = torch.nn.CrossEntropyLoss etc.    # 对于分类任务
loss = x(model_output,expected_value)

4、Optimization Algorithm(优化)

torch.optim

这是基于梯度的优化算法,不断调整参数,减少误差

比如:随机梯度下降(SGD)

torch.optim.SGD(model.parameters(), lr, momentum = 0)

* 调用optimizer.zero_grad()重置模型参数的梯度。

*调用loss.backward()反向传播预测loss的梯度。

*调用optimizer.step()调整模型参数。 

5、Entire Procedure(整个程序)

import torch.utils.data as data
dataset = data.Dataset(file)              # 读取数据
tr_set = DataLoader(dataset,batch_size,shuffle=True)  # 对数据集进行分组
model = MyModel().to(device)              # 建立我的模型并且选择我的设备(cpu or gpu)
criterion = nn.MSELoss()                # 建立损失函数
optimizer = torch.optim.SGD(model.parameters(),0.1)   # 建立优化
# 训练
for epoch in range(n_epochs):             # 迭代数据model.train()                    # 训练模型for x, y in tr_set:               # 迭代数据集optimizer.zero_grad()              # 设置梯度为0x, y = x.to(device),y.to(device)       # 将数据移动到设备pred = model(x)                # 计算输出loss = criterion(pred,y)            # 计算损失函数loss.backward()                 # 计算反向梯度optimizer.model()                # 优化模型
# 验证
model.eval()                      # 将模型设置为评估模式
total_loss = 0          
for x,y in dv_set:                  # 对数据集进行迭代x,y = x.to(device),y.to(device)          # 将数据移动到涉笔with torch.no_grad():                # 不可迭代的计算pred = model(x)                # 计算输出loss = criterion(pred,y)           # 计算损失函数total_loss += loss.cpu().item()*len(x)      # 累加损失误差avg_loss = total_loss / len(dv_set.dataset)   # 计算平均损失
# 测试
model.eval()                       # 将模型设置为评估模式
preds = []
for x in dv_set:                   # 对数据集进行迭代x = x.to(device)                  # 将数据移动到涉笔with torch.no_grad():                # 不可迭代的计算pred = model(x)                # 计算输出preds.append(pred.cpu())             # 收集预测

// model.eval()  :更改模型的行为

//  with torch.no_grad() :防止对验证/测试数据进行意外训练

当我们训练完模型,也完成了测试,为了不使模型丢失,我们需要保存模型,pytorch也为我们提供了保存模型的方法。

保存模型:torch.save(model.state_dict(),path)

下次我们使用已经训练完成的模型,或者想继续训练,我们需要读取模型。

读取模型:ckpt = torch.load(path)     model.load_state_dict(ckpt)

// 这只是我根据所听的课自己写的笔记,如果有什么错误欢迎指正!!!

这篇关于机器学习-pytorch1(持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793646

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio