Matlab|【EI复现】电动汽车集群并网的分布式鲁棒优化调度模型

本文主要是介绍Matlab|【EI复现】电动汽车集群并网的分布式鲁棒优化调度模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 内容简介

2 关键知识点

2.1 三类电动汽车模型

3 程序结果

4 下载链接


1 内容简介

电动汽车的数据模型种类繁多,但是用到比较高阶数学方法的并不多,本次分享的程序是下图所示的文章。

采用分布鲁棒优化模型,用到鲁棒对等转换,并采用ADMM算法进行求解,程序和文章方法一致,具有较好的参考价值。

2 关键知识点

2.1 三类电动汽车模型

根据文章所述,三类电动汽车模型分别如下所示:

对应程序代码如下(第二类电动汽车):

con1=[];
​
for i=1:sumA1n2
​for t=1:T
​k=k+1;
​if t==1
​con1=[con1,x_socu1(i,t)==u1soc(i)+yita*x_pju1(i,t)/El];%soc约束
​con1=[con1,x_pju1(i,t)==pcr*timeu1(i,t)];%充电功率约束
​else
​con1=[con1,x_socu1(i,t)==x_socu1(i,t-1)+yita*x_pju1(i,t)/El];   %soc约束
​con1=[con1,sum(lind(k,:))==1,
​implies(lind(k,1),[x_socu1(i,t-1)>=Scr,0<=x_pju1(i,t)<=pcr*timeu1(i,t)]);%soc大于0.4时充电功率约束
​implies(lind(k,2),[x_socu1(i,t-1)<=Scr,x_pju1(i,t)==pcr*timeu1(i,t)])];%soc小于0.4时充电功率约束
​end
​​
% con1=[con1,0<=x_pju1(i,t)<=pcr*timeu1(i,t)];
​end
​
end
​
for i=1:u1sum20
​con1=[con1,Slex<=x_socu1(i,24)<=1];%离网soc约束
​
end
​
con1=[con1,0<=x_socu1<=1];
​
2.2 发电机启停约束
​
发电机启停时间约束是编程的一个难点,具体约束表达形式列写在下面,详细与原理可以参见视频讲解部分。
​
Horizon = size(x,2);
​
C = [];
​
for k = 2:size(x,2)
​for unit = 1:size(x,1)
​% indicator 代表机组启停动作
​indicator = x(unit,k)-x(unit,k-1);
​range = k:min(Horizon,k+minup(unit)-1);%约束状态,状态维持不变,开关机至少保持时间范围
​% Constraints will be redundant unless indicator = 1
​affected = x(unit,range);
​if strcmp(class(affected),'sdpvar')
​% 开关机状态约束,只要开机,必然维持最小运转时间
​C = [C, affected >= indicator];
​end
​end
​
end

2.3 ADMM算法迭代部分

迭代部分是程序运行的灵魂所在,但是对于模块化编程,这部分确实不好展示,就把模块化代码列在此处,详细信息可以下载程序源码了解。

for i=1:10%循环次数,次数越多越收敛,但是运算时间就长
​[PDN,x_pd1,x_pd2,x_pv1,x_pv2,x_pw1,x_pw2]=mp(PAjr,lamr,P2j1,P3j1,P2j2,P3j2,P2j3,P3j3,P2j4,P3j4);%主问题
​[P1j1,P2j1,P3j1,PA1t,x_pjd1,x_pju1,x_pjh1,x_socd1,x_socu1,x_soch1]=eva1(PDN,lamr,A1n1,A1n2,A1n3);%子问题1
​​[P1j2,P2j2,P3j2,PA2t,x_pjd2,x_pju2,x_pjh2,x_socd2,x_socu2,x_soch2]=eva2(PDN,lamr,A2n1,A2n2,A2n3);%子问题2
​
%
​[P1j3,P2j3,P3j3,PA3t,x_pjd3,x_pju3,x_pjh3,x_socd3,x_socu3,x_soch3]=eva3(PDN,lamr,A3n1,A3n2,A3n3);%子问题3
​​[P1j4,P2j4,P3j4,PA4t,x_pjd4,x_pju4,x_pjh4,x_socd4,x_socu4,x_soch4]=eva4(PDN,lamr,A4n1,A4n2,A4n3);%子问题4
​​PAjr=[P1j1+P2j1+P3j1;P1j2+P2j2+P3j2;P1j3+P2j3+P3j3;P1j4+P2j4+P3j4];
​​lamr=lamr+pho.*(PDN-PAjr);
​​slp(i)=(sum(sum((PDN-PAjr).*(PDN-PAjr))))^0.5;
​
end

3 程序结果

4 下载链接

这篇关于Matlab|【EI复现】电动汽车集群并网的分布式鲁棒优化调度模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793432

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结