华容道问题求解_详细设计(四)之查找算法2_BFS

2024-03-10 03:44

本文主要是介绍华容道问题求解_详细设计(四)之查找算法2_BFS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(续上篇)
利用BFS查找,会找到最短路径(没有权重的图),这个道理比较简单,这是由于寻找路径的方法都是从起点或者接近起点的位置开始的。查找过程如果画出图来,类似于一圈圈的放大,你可以想想是一个类似圆的渐开线的扫描过程。
前文已经谈到,这个BFS和DFS的主要不同就是对当前参数的保存方法不同,即BFS采用队列保存,DFS采用堆栈保存。因此,将DFS的保存当前参数的方法改成队列就可以实现BFS了。

BFS 核心代码

       internal bool SearchPathBFS(int endHashCode){if (statesObjQueue.Count == 0) return false;//##############################################################//## BFS 代码的改变如下                                        ##//##############################################################var lastState = DequeueState(); //var lastHashCode=   layoutHashCodeStk.Pop();// map it to the current  state MapToCurState(lastState);var curBestSteps = lastState.bestSteps+1;while (gameState.openPieces.Count > 0 && gameState.curOpenIdx < gameState.openPieces.Count)// There are open pieces not moved , move them one by one.{var selOpenPcs = gameState.openPieces[gameState.curOpenIdx];var selPcs = selOpenPcs.piece;var toPcs = selOpenPcs.MoveToPcs;var dirFrom = MoveToPcs(selPcs, toPcs);gameState.selPcs = selPcs;var redundant = RedundantState(gameState);StateShot stateShot = new StateShot(gameState, 0);// record the current best steps stateShot.bestSteps = curBestSteps;//Create the graph data structure AddEdgeToGraph(lastState, stateShot);if (gameState.curOpenIdx < lastState.openPcsArr.Length){gameState.curOpenIdx++;lastState.lastOpenIdx = gameState.curOpenIdx;}if (!redundant.Item1){SearchOpenPieces();stateShot = new StateShot(gameState, 0);stateShot.bestSteps = curBestSteps;//##############################################################//## BFS 代码的改变如下                                       ##//##############################################################         EnqueueState(lastState, stateShot, selPcs, toPcs);//add edge to the grapph and enqueue the current state}// 2024-01-30 Found the least steps with BFS and it runs very fast.// Judge if it succeeds that caocao is at the exit of the board.if (endHashCode==0 && selPcs.type == 4){if (selPcs.hrdPos.X == 2 && selPcs.hrdPos.Y == 4){RefreshLayout();Application.DoEvents();var verTex = GetMyHashCodeV1(gameState);// the layout might not the same that needs to record all of them if (!endVtxLst.Contains(verTex)) endVtxLst.Add(verTex);//MessageBox.Show(string.Format("Success! The best steps is {0},the hash code is {1}", hCodeAndShotShortPathDict[verTex].Item2, verTex));//return false;//debug}}else if (redundant.Item2 == endHashCode){RefreshLayout();Application.DoEvents();var verTex = GetMyHashCodeV1(gameState);// the layout might not the same that needs to record all of them if (!endVtxLst.Contains(verTex)) endVtxLst.Add(verTex);}MapToCurState(lastState); // back the last state and try to moev next open pieces}return true;}

和DFS的代码对比一下就会发现,除了堆栈改成队列之外,代码几乎没有做什么改变。

下面给出 两个主要变化的函数代码
入队代码:

       private void EnqueueState(StateShot source, StateShot dest, Piece selPcs, Piece dstPcs){statesObjQueue.Enqueue(dest);var toHashCode = GetMyHashCode(dest);stateHashCodeLst.Add(toHashCode);int[,] layoutArr = new int[6, 7];Array.Copy(dest.layoutOfIdx, layoutArr, layoutArr.Length);hCodeAndShotDict.Add(toHashCode, (dest.basePcs, selPcs.idx, dstPcs.idx));var frmHashCode = GetMyHashCode(source);AddEdge(frmHashCode, toHashCode, 1);}

出队代码

       private StateShot DequeueState(){var stshot = statesObjQueue.Dequeue();//stateHashCodeStack.Pop();return stshot;}

其中 statesObjQueue 的定义为;

//used to store the game state and the shortest path from last state For BFS search private Queue<StateShot> statesObjQueue= new Queue<StateShot>();

运行之后,就很快找到了最少步数,虽然在过程当中也构建了一个图,但是并没有使用这个图。

结果也比较理想,是一个对称的结果,符合预期。这个原因,我想是因为在BFS 的求解过程当中的每一次探索的步数的基数都是一样的,而路径是不同的,因此也就必然会出现这么一种结果。
运行结果获得30种符合要求的布局,根据对称性,应该是15 中不同的解法。
截图如下:
说明:左面列表数值是该布局对应的Hash值
在这里插入图片描述
在这里插入图片描述
对比上面的布局,发现这是个对称的布局。这些解法中,最少的是81步,最多的是 115步。
其余结果请参考下列视频。另外 “不同解法 ”的含义就是最终的布局不同。

横刀立马最佳结果集


基本功能的探索到此告一段落,后面将对显示和布局设计进行一些尝试。

marasun BJFWDQ
204-03-09

这篇关于华容道问题求解_详细设计(四)之查找算法2_BFS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792923

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图