【数据分享】2013-2022年全国范围逐月CO栅格数据(免费获取)

本文主要是介绍【数据分享】2013-2022年全国范围逐月CO栅格数据(免费获取),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000-2022年全国范围逐月的PM2.5栅格数据和2013-2022年全国范围逐月SO2栅格数据(可查看之前的文章获悉详情)。

本次我们给大家带来的是2013-2022年全国范围的逐月的CO栅格数据,原始数据格式为NetCDF (.nc),空间分辨率为1km和10km两种(其中:2013-2018年为10km,2019-2022年为1km),单位为mg/m3,坐标系为WGS_1984。为了方便大家使用,我们将数据格式转换为了栅格格式(.tif)。

数据来源于韦晶博士、李占清教授团队发布在国家青藏高原科学数据中心网站上的中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP),CO数据是该数据集的主要指标之一。该数据是利用人工智能技术,考虑了空气污染的时空异质特性,从大数据(如地基观测、卫星遥感产品、大气再分析和模式模拟资料等)中生产得到2013年至2022年全国无缝隙地面CO数据。另外,该数据持续更新,如有需要大家可持续关注!

大家可以自己去国家青藏高原科学数据中心下载nc格式的原始数据,也可以在本公众号回复关键词 161 免费获取nc格式,以及我们转换出的tif格式两种格式的数据。无需转发文章,无套路获取!以下为数据的详细介绍:

01 数据预览

该数据包括nc和tif两种格式!两种数据格式的命名规则不同:

(1)nc.格式:CHAP_CO_ab_yyyymm_V2.nc

  • CHAP:表示数据集名称
  • CO:表示空气污染物的指标名称
  • ab:表示时间和空间分辨率,其中a表示时间分辨率(M表示为逐月数据),b表示空间分辨率(1K表示1km,10k表示10km)
  • yyyymm:表示数据时间,其中yyyy代表年,mm表示月
  • V2:表示数据版本
  • nc:表示数据格式

例如:CHAP_CO_M1K_202212_V2.nc,表示为2022年12月的1km分辨率的逐月的CO数据。

(2).tif格式:按照年月日的日期格式(yyyymm.tif)命名栅格文件

例如:202101.tif,表示为2021年1月的CO栅格数据。

我们具体以2022年12月全国范围的CO数据为例来预览一下:

2022年12月全国CO

02 数据详情

时间范围

2013-2022年(逐月)

空间范围:

全国

数据格式:

NetCDF [.nc] 和.tif

空间分辨率:

2013-2018年:10km

2019-2022年:1km

数据单位:

mg/m3

数据坐标:

WGS_1984

原始数据的下载网站:

数据来源于美国马里兰大学韦晶博士、李占清教授团队在国家青藏高原科学数据中心平台上分享的数据,网址为:https://data.tpdc.ac.cn/zh-hans/data/dab9def0-ff3b-4195-b5ad-34eafb192f05

数据引用:

韦晶, 李占清. (2023). 中国高分辨率高质量地面CO数据集(2013-2022). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.4641530.

Wei, J., Li, Z. (2023). ChinaHighCO: High-resolution and High-quality Ground-level CO dataset for China (2013-2022). National Tibetan Plateau / Third Pole Environment Data Center.

https://doi.org/10.5281/zenodo.4641530.

相关论文引用:

Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., & Cribb, M. (2023). Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023

如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

02 数据获取

这篇关于【数据分享】2013-2022年全国范围逐月CO栅格数据(免费获取)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792299

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

SpringBoot UserAgentUtils获取用户浏览器的用法

《SpringBootUserAgentUtils获取用户浏览器的用法》UserAgentUtils是于处理用户代理(User-Agent)字符串的工具类,一般用于解析和处理浏览器、操作系统以及设备... 目录介绍效果图依赖封装客户端工具封装IP工具实体类获取设备信息入库介绍UserAgentUtils

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置