Python和Google Colab进行卫星图像二维小波变化和机器学习

2024-03-09 18:36

本文主要是介绍Python和Google Colab进行卫星图像二维小波变化和机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2D 小波分解是图像处理中的一种流行技术,使用不同的滤波器将图像分解为不同的频率分量(“近似”和“细节”系数)。该技术对于各种图像处理任务特别有用,例如压缩、去噪、特征提取和边缘检测。

在本文中,我们将演示如何在 Google Colab 中使用 Python 下载高分辨率样本卫星图像,执行 2D 小波分解,可视化高频和低频分量,并使用逆小波方法重建图像,机器学习(ML)算法和耦合线性回归优化模型。为了提高 ML 模型的复杂性,我们将从输入中消除主要组件,并仅使用细节组件重新训练 ML 模型。在整个过程中,我们将评估每种方法在重建阶段的性能,并将 ML 模型的输出可视化。

目录

  1. 🌟简介
  2. 🌐 在 Google Colab 中下载卫星图像
  3. ⚙️ 应用小波分解
  4. 🔄 使用小波逆变换重建图像
  5. 🔄 使用 ML 算法重建图像
  6. 🔄 使用线性回归模型重建图像
  7. 🔄 使用耦合线性回归模型和优化算法重建图像
  8. 📈 评估不同的重建方法
  9. 🔃 使用没有近似系数的 ML 重建图像
  10. 📄 结论

🌟简介

小波分解的过程包括对图像应用一系列高通和低通滤波器,将图像分离成不同的频率分量。通常,分解分多个阶段完成,在每个级别生成一组近似系数和细节系数。近似系数代表图像的低频分量,而细节系数则捕获高频分量。

小波分解通常与其他技术(例如机器学习)结合使用,以增强图像的分析和处理。通过利用小波的多分辨率功能,研究人员和从业人员可以为各种图像相关任务开发更有效和高效的算法。

总体而言,小波分解已成为图像处理领域的重要工具,并在卫星图像分析、医学成像、信号处理等各个领域都有应用。如果您有兴趣探索 2D 小波分解和 ML 算法在无人机图像中缩小地表温度的主要应用之一

🌐 在 Google Colab 中下载卫星图像

第一步涉及找到下载高分辨率图像的方法。为此,强烈推荐使用 Google 地图的高分辨率航空和卫星图像,尤其是在城市地区。使用 Qiusheng Wu 创建的库可以简化此步骤。确保您已安装必要的组件,包括“segment-geospatial”、“leafmap”和“localtileserver”。接下来,定义所需感兴趣区域 (AOI) 的纬度和经度并继续绘制多边形:

%pip install segment-geospatial leafmap localtileserver
import os
import leafmap
from samgeo import SamGeo, tms_to_geotiff
m = leafmap.Map(center=[37.716956, -120.951107], zoom=20, height="800px")
m.add_basemap("SATELLITE")
m

 

bbox = m.user_roi_bounds()
image = "satellite.tif"
tms_to_geotiff(output=image, bbox=bbox, zoom=20, source="Satellite", overwrite=True)

在最后三行中,将感兴趣区域 (AOI) 的边界分配给“bbox”变量,设置输出名称,然后执行“tms_to_geotiff”以指定名称保存卫星图像,在本例中为“satellite” .tif”。

⚙️ 应用小波分解

为了对 2D 图像执行小波分解,我们将使用 Rasterio 库读取下载的图像,并使用 Daubechies 小波家族的一个成员(例如 db1)和“对称”模式实现 2D 分解。

Daubechies 小波是正交小波族,广泛应用于信号处理和图像压缩。“DB”后面的数字表示小波函数中消失矩的数量。小波的消失矩越多,它就越平滑。

另一方面,模式是指执行小波分解的具体方式。该模式可以确定如何计算小波系数以及分解过程如何处理图像的边缘和边界。不同的模式可能导致小波分解输出的变化,特别是在图像的边缘。

小波分解后,原始图像将被划分为不同的频率分量。近似系数表示为cA,而cH、cV和cD分别称为水平、垂直和对角线细节系数。这些系数中的每一个都捕获有关水平、垂直和对角边缘的信息。图像分解后,将绘制每个子带:

import pywt
import rasterio
import numpy as np
import matplotlib.pyplot as plt# Load GeoTIFF image
with rasterio.open('satellite.tif') as src:img = src.read(1)# Perform 2D wavelet decomposition
coeffs = pywt.dwt2(img, 'db1', mode='symmetric')# Extract detail and approximation coefficients
cA, (cH, cV, cD) = coeffs# Plot the decomposed coefficients
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
ax[0, 0].imshow(cA, cmap='seismic')
ax[0, 0].set_title('Approximation Coefficient')
ax[0, 1].imshow(cH, cmap='seismic')
ax[0, 1].set_title('Horizontal Detail Coefficient')
ax[1, 0].imshow(cV, cmap='seismic')
ax[1, 0].set_title('Vertical Detail Coefficient')
ax[1, 1].imshow(cD, cmap='seismic')
ax[1, 1].set_title('Diagonal Detail Coefficient')
plt.show()

在上图中,图像的主要部分已保持在近似系数内,而其余元素代表各种方向边缘特征。

这篇关于Python和Google Colab进行卫星图像二维小波变化和机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791589

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e