【李沐】动手学习ai思路softmax回归实现

2024-03-09 17:12

本文主要是介绍【李沐】动手学习ai思路softmax回归实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:https://www.cnblogs.com/blzm742624643/p/15079086.html

一、从零开始实现

1.1 首先引入Fashion-MNIST数据集

复制代码

1 import torch
2 from IPython import display
3 from d2l import torch as d2l
4 
5 batch_size = 256
6 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

复制代码

1.2 初始化模型参数

原始图像中每个样本都是28*28的,所以要展平每个图像成长度为784的向量。

权重784*10,偏置1*10

1 num_inputs = 784
2 num_outputs = 10
3 
4 W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
5 b = torch.zeros(num_outputs, requires_grad=True)

1.3 定义softmax操作

如果为0则留下一行,为1则留下一列

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

 

1 def softmax(X):
2     X_exp = torch.exp(X)
3     partition = X_exp.sum(1, keepdim=True)
4     return X_exp / partition  # 这里应用了广播机制
1 X = torch.normal(0, 1, (2, 5))
2 X_prob = softmax(X)
3 X_prob, X_prob.sum(1)

1.4 模型定义

  -1 的地方为批次, W.shape[0]为输入的维度

1 def net(X):
2     return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

1.5 损失函数

通过 y 来获取 y_hat 中的值

1 y = torch.tensor([0, 2])
2 y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
3 y_hat[[0, 1], y]

学会了以上的操作我们就可以用一行来实现交叉熵损失函数

def cross_entropy(y_hat, y):return -torch.log(y_hat[range(len(y_hat)), y])cross_entropy(y_hat, y)

1.6 分类准确率

假设y_hat是一个矩阵,第二个维度存储每个类的预测分数。使用argmax获得每行中的最大元素。

复制代码

def accuracy(y_hat, y):  #@save"""计算预测正确的数量。"""if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:y_hat = y_hat.argmax(axis=1)cmp = y_hat.type(y.dtype) == yreturn float(cmp.type(y.dtype).sum())

复制代码

 

在评估模式的时候不计算梯度,只做前向传递

复制代码

1 def evaluate_accuracy(net, data_iter):  #@save
2     """计算在指定数据集上模型的精度。"""
3     if isinstance(net, torch.nn.Module):
4         net.eval()  # 将模型设置为评估模式
5     metric = Accumulator(2)  # 正确预测数、预测总数
6     for X, y in data_iter:
7         metric.add(accuracy(net(X), y), y.numel())
8     return metric[0] / metric[1]

复制代码

关于用于对多个变量进行累加的Accumulator类的实现

复制代码

 1 class Accumulator:  #@save2     """在`n`个变量上累加。"""3     def __init__(self, n):4         self.data = [0.0] * n5 6     def add(self, *args):7         self.data = [a + float(b) for a, b in zip(self.data, args)]8 9     def reset(self):
10         self.data = [0.0] * len(self.data)
11 
12     def __getitem__(self, idx):
13         return self.data[idx]

复制代码

由于随机权重初始化net模型,所以准确率近似于随机猜测

1 evaluate_accuracy(net, test_iter)

1.7  训练

updater 是更新模型参数的常用函数,它接受批量大小作为参数。它可以是封装的d2l.sgd函数,也可以是框架的内置优化函数。

复制代码

def train_epoch_ch3(net, train_iter, loss, updater):  #@save"""训练模型一个迭代周期(定义见第3章)。"""# 将模型设置为训练模式if isinstance(net, torch.nn.Module):net.train()# 训练损失总和、训练准确度总和、样本数metric = Accumulator(3)for X, y in train_iter:# 计算梯度并更新参数y_hat = net(X)l = loss(y_hat, y)if isinstance(updater, torch.optim.Optimizer):# 使用PyTorch内置的优化器和损失函数updater.zero_grad()# 计算梯度l.backward()  # 更新参数updater.step()metric.add(float(l) * len(y), accuracy(y_hat, y),y.size().numel())else:# 使用定制的优化器和损失函数l.sum().backward()updater(X.shape[0])metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())# 返回训练损失和训练准确率return metric[0] / metric[2], metric[1] / metric[2]    

复制代码

辅助函数

复制代码

class Animator:  #@save"""在动画中绘制数据。"""def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):# 增量地绘制多条线if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes,]# 使用lambda函数捕获参数self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmtsdef add(self, x, y):# 向图表中添加多个数据点if not hasattr(y, "__len__"):y = [y]n = len(y)if not hasattr(x, "__len__"):x = [x] * nif not self.X:self.X = [[] for _ in range(n)]if not self.Y:self.Y = [[] for _ in range(n)]for i, (a, b) in enumerate(zip(x, y)):if a is not None and b is not None:self.X[i].append(a)self.Y[i].append(b)self.axes[0].cla()for x, y, fmt in zip(self.X, self.Y, self.fmts):self.axes[0].plot(x, y, fmt)self.config_axes()display.display(self.fig)display.clear_output(wait=True)

复制代码

进行num_epochs个迭代周期的训练,每个迭代周期结束利用test_iter访问到的测试数据集对模型进行评估。

复制代码

 1 def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save2     """训练模型(定义见第3章)。"""3     animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],4                         legend=['train loss', 'train acc', 'test acc'])5     for epoch in range(num_epochs):6         train_metrics = train_epoch_ch3(net, train_iter, loss, updater)7         test_acc = evaluate_accuracy(net, test_iter)8         animator.add(epoch + 1, train_metrics + (test_acc,))9     train_loss, train_acc = train_metrics
10     assert train_loss < 0.5, train_loss
11     assert train_acc <= 1 and train_acc > 0.7, train_acc
12     assert test_acc <= 1 and test_acc > 0.7, test_acc

复制代码

复制代码

1 lr = 0.1
2 
3 def updater(batch_size):
4     return d2l.sgd([W, b], lr, batch_size)
5 
6 num_epochs = 10
7 train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

复制代码

1.8 预测

复制代码

def predict_ch3(net, test_iter, n=6):  #@save"""预测标签(定义见第3章)。"""# 拿出一个样本for X, y in test_iter:breaktrues = d2l.get_fashion_mnist_labels(y)preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))titles = [true + '\n' + pred for true, pred in zip(trues, preds)]d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])predict_ch3(net, test_iter)

复制代码

这篇关于【李沐】动手学习ai思路softmax回归实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791360

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符