【数字人】12、DINet | 使用形变+修复模块实现高清 talking head 生成(AAAI2023)

本文主要是介绍【数字人】12、DINet | 使用形变+修复模块实现高清 talking head 生成(AAAI2023),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 deformation part
      • 2.2 inpainting part
      • 2.3 Loss 函数
    • 三、效果
      • 3.1 数据集
      • 3.2 实现细节
      • 3.3 可视化效果

论文:DINet: Deformation Inpainting Network for Realistic Face Visually Dubbing on High Resolution Video

代码:https://github.com/MRzzm/DINet

出处:AAAI2023

贡献:

  • 提出了能产生高分辨率视频的方法,能够同时产生准确的嘴型且保留纹理细节
  • 本文方法是【形变模块】+【修复模块】组成的,在参考帧的基础上对嘴型进行形变从而产生新的口型结果,而非直接生成

一、背景

在这里插入图片描述

本文针对 few-shot learning,提出了一种 Deformation Inpainting Network (DINet)

DINet 和之前的方法最大的不同在于:

  • 之前的方法主要依赖于多个上采样层来直接从隐空间来生成最终的像素结果
  • DINet 在 referece image 的特征图上使用了 spatial deformation,能够保留更多的高频纹理细节

DINet 的组成:

  • 一个 deformation 模块:嘴部形变模块,为了避免生成的结果产生模糊,本文是会对嘴部区域附近的特征图进行空间形变,用于产生音频同步的嘴型
    • 首先会自适应的选取 5 个参考帧(面部图片)
    • 然后使用 spatial deformation 来为这些参考帧的人脸的特征图进行形变,生成形变后的特征图,目标是为了让【嘴部】和输入的【音频+头部姿态】保持对齐
  • 一个 inpainting 模块:也就是一个解码器,能够将形变后的嘴部特征和上半脸+头部姿态合并起来,输出自然的生成结果
    • 通过卷积层融合源人脸特征和变形结果,修复嘴部区域像素

二、方法

在这里插入图片描述

本文提出的 DINet 的结构如图 2 所示,主要由变形模块( P D P^D PD)和修复模块 ( P I P^I PI)组成,前者是在空间上对参考帧的特征图进行形变,后者是利用变形后的结果来修复源人脸中的嘴部区域

2.1 deformation part

如图 2 的上半部分就是变形模块( P D P^D PD):

  • 给定源图片 source image I s ∈ R 3 × H × W I_s \in R{3 \times H \times W} IsR3×H×W
  • 给定驱动声音 A d ∈ R T × 29 A_d \in R^{T \times 29} AdRT×29
  • 给定 5 张参考图片 reference image I r e f ∈ R 15 × H × W I_{ref} \in R{15 \times H \times W} IrefR15×H×W

变形模块的主要目标是生成形变特征 F d ∈ R 256 × H / 4 × W / 4 F_d \in R{256 \times H/4 \times W/4} FdR256×H/4×W/4,并且这个特征是要和驱动音频 A d A_d Ad 同步的嘴型,并和 source 图片 I s I_s Is 对齐头部姿态

  • 首先,将音频特征输入 audio encoder 得到 audio feature F a u d i o F_{audio} Faudio
  • 然后,将 source image I s I_s Is 和 reference image I r e f I_{ref} Iref 输入两个不同的 encoder 网络来分别生成对应的特征 F s ∈ R 256 × H / 4 × W / 4 F_s \in R^{256 \times H/4 \times W/4} FsR256×H/4×W/4 F r e f ∈ R 256 × H / 4 × W / 4 F_{ref} \in R^{256 \times H/4 \times W/4} FrefR256×H/4×W/4
  • 接着,将 F s ∈ R 256 × H / 4 × W / 4 F_s \in R^{256 \times H/4 \times W/4} FsR256×H/4×W/4 F r e f ∈ R 256 × H / 4 × W / 4 F_{ref} \in R^{256 \times H/4 \times W/4} FrefR256×H/4×W/4 进行 concat 后输入一个 alignment encoder 来得到对齐后的特征 F a l i g n ∈ R 128 F_{align} \in R^{128} FalignR128 F a l i g n ∈ R 128 F_{align} \in R^{128} FalignR128 的作用是对 I s I_s Is I r e f I_{ref} Iref 的 head pose 进行对齐
  • 最后,使用 F a u d i o F_{audio} Faudio F a l i g n F_{align} Falign 被用于将 F r e f F_{ref} Fref 形变为 F d F_d Fd

如何进行形变呢:

  • 本文使用了 AdaAT 的方法来进行形变(没有使用密集flow的方法),主要的原因是相比于 flow,AdaAT 能够通过对特征通道进行特定变形来变形特征图
  • AdaAT 会在不同的特征通道上计算不同的仿射系数
  • 在此处 P D P^D PD 使用全连接层来计算旋转、平移、缩放系数,然后使用这些仿射系数对 F r e f F_{ref} Fref 进行仿射变换

在这里插入图片描述

2.2 inpainting part

图 2 的黄色矩形就是 inpainting part P I P^I PI 的结构,这个模块的目标就是使用 source image 的特征图 F s F_s Fs 和形变后的 ref 特征图 F d F_d Fd 来合成最终的说话图片 I o ∈ 3 × H × W I_o \in 3 \times H \times W Io3×H×W

  • 首先,将 F d F_d Fd F s F_s Fs 进行 concat
  • 然后,使用一个 decoder(卷积层)来修复 source image 被 mask 掉的嘴部区域,并且生成 I o I_o Io

2.3 Loss 函数

作者在训练过程中使用了 3 个 loss 函数

  • perception loss
  • GAN loss
  • lip-sync loss

1、perception loss

作者使用两个尺度上的图片来计算感知损失,作者将生成的图像和原始的图像送入 VGG-19 得到特征后计算一次 loss,下采样 2 倍后送入 VGG-19 得到特征后再计算一次 loss,两个 loss 求均值:

在这里插入图片描述

2、GAN loss

作者使用 LS-GAN loss

在这里插入图片描述

3、Lip-sync loss

作者使用这个 loss 是为了提升生成的嘴型同步性,作者使用 audio spectrogram with deepspeech 特征重新训练了 syncnet

在这里插入图片描述

4、整体 loss

在这里插入图片描述

三、效果

3.1 数据集

作者使用 HDTF 和 MEAD 数据集

  • HDTF:约 430 个视频,分辨率为 720P 或 1080P,随机选择 20 个视频作为测试
  • MEAD:收集了约 1920 个正常表情的前视方向的视频作为训练数据,选择了 240 个视频(6个人)作为测试

3.2 实现细节

数据处理:

  • 视频首先会 resample 到 25fps
  • 使用 openface 提取到 68 个人脸关键点,然后 crop 出面部区域,将所有 crop 的面部区域 resize 到 416x320,其中嘴部区域会占 256x256
  • 使用 deepspeech 提取语音特征

训练阶段:

  • DINet 输入一个 source frame,分辨率为 3x416x320,再输入一个 driving audio,维度为 5x29,还有 5 帧 reference image,分辨率为 15416x320
  • syncnet 输入 5 帧 mouth image(256x256) 和对应的 deepspeech 特征
  • 优化器:Adam,学习率 0.0001
  • batch: DINet 是 3,syncnet 是 20

3.3 可视化效果

在这里插入图片描述

在这里插入图片描述

这篇关于【数字人】12、DINet | 使用形变+修复模块实现高清 talking head 生成(AAAI2023)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790739

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据