一段关于Python字典遍历的“争论”

2024-03-09 11:08

本文主要是介绍一段关于Python字典遍历的“争论”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一段关于Python字典遍历的“争论”


小弟我今天吃饱了饭逛大神们的blog,发现bones的某篇日志下面这么一段小小的争论。

先摘抄下:

其实这个问题本来很简单,就是说如果遍历一个字典,但是在遍历中改变了他,比如增删某个元素,就会导致遍历退出,并且抛出一个dictionary changed size during iteration的异常
bones的解决方法是遍历字典键值,以字典键值为依据遍历,这样改变了value以后不会影响遍历继续。
但是下面又有一位大神抛出高论:

。首先,python 是推荐使用迭代器的,也就是 for k in adict 形式。其次,在遍历中删除容器中的元素,在 C++ STL 和 Python 等库中,都是不推荐的,因为这种情况往往说明了你的设计方案有问题,所有都有特殊要求,对应到 python 中,就是要使用 adict.key() 做一个拷贝。最后,所有的 Python 容器都不承诺线程安全,你要多线程做这件事,本身就必须得加锁,这也说明了业务代码设计有问题的

但由“遍历中删除特定元素”这种特例,得出“遍历dict的时候,养成使用 for k in d.keys() 的习惯”,我觉得有必要纠正一下。在普通的遍历中,应该使用 for k in adict。
另外,对于“遍历中删除元素”这种需求,pythonic 的做法是 adict = {k, v for adict.iteritems() if v != 0} 或 alist = [i for i in alist if i != 0]

这个写法让我眼前一亮:怎么还有这个语法?
再仔细一看,他可能是这个意思:

不知道对不对。
因为这个写法一开始让我猛然想到三元操作符,仔细一看才发现不是,以前Goolge到有个解决方案

val>65是个逻辑表达式,返回0或者1,刚好作为前面那个元组的ID来取值,实在是太妙了。。。
不过在Google的资料里面还有一个版本


后来发帖在 华蟒用户组(中文Python技术邮件列表)( http://groups.google.com/group/python-cn/browse_thread/thread/047b1401e96c4b88#)中提到后众多大神解答如下:

>>> alist = [1,2,0,3,0,4,5]
>>> alist = [i for i in alist if i != 0]
>>> alist

[1, 2, 3, 4, 5]

>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
>>> d = dict([(k,v) for k,v in d.iteritems() if v!=0])
>>> d
{'a':1,'c':1'}

如果大于Python>=2.7
还可以用这个写法:

>>> d = {k:v for k,v in d.iteritems() if v !=0 }

也就是赖勇浩原文里面提到的语法


原文:http://blog.ihipop.info/2010/10/1777.html

这篇关于一段关于Python字典遍历的“争论”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790490

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: