【字符串】【分类讨论】【KMP】1163. 按字典序排在最后的子串

2024-03-09 10:04

本文主要是介绍【字符串】【分类讨论】【KMP】1163. 按字典序排在最后的子串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

字符串 字典序 分类讨论
本题无法使用KMP,因为t1不段变化。

LeetCode1163. 按字典序排在最后的子串

给你一个字符串 s ,找出它的所有子串并按字典序排列,返回排在最后的那个子串。
示例 1:
输入:s = “abab”
输出:“bab”
解释:我们可以找出 7 个子串 [“a”, “ab”, “aba”, “abab”, “b”, “ba”, “bab”]。按字典序排在最后的子串是 “bab”。
示例 2:
输入:s = “leetcode”
输出:“tcode”
提示:
1 <= s.length <= 4 * 105
s 仅含有小写英文字符。

KMP

令s[0,i)的最后子串是t1,s[0,i]的最后子串t2。则t2一定以s[i],结尾,因为t1+s[i]一定在t1后面。
{ 从 t 1 取 0 个字符, t 2 = s [ i ] s [ i ] > t [ 0 ] 从 t 1 取后 m 个字符 t [ i − m , i ) + s [ i ] 条件下面详述 \begin{cases} 从t1取0个字符,t2 = s[i] & s[i] > t[0] \\ 从t1取后m个字符 t[i-m,i)+s[i] &条件下面详述\\ \end{cases} {t10个字符,t2=s[i]t1取后m个字符t[im,i)+s[i]s[i]>t[0]条件下面详述
t1[0,m) 不会小于 t[i-m,i),否则t1就是t[n-m,m)。
如果两种是大于关系,则t1[0,m]大于 t[i-m,i)+s[i] ,不成立。
故一定是相等关系,且t1[m]小于s[i]。
可以利用KMP的公共前后缀。
如果以上情况都不符合,则t2 = t1 + s[i]。
如果使用KMP,t1不断变化,时间复杂度是O(nn),超时。

分类讨论

令n = s.length()。
性质一:令s[x,y)是最后的子串,x ∈ \in [0,n)则y=n。因为s[x,n)的字典序比s[x,y)大。
性质二:令s[i,n)在s[x,n)中的字典序最大,x ∈ \in [0,j)。确保:j > i。
令s[i,i+k)和s[j,j+k)相等,下标 j+K非法, s[i+k]!=s[j+k]。初始:i=0,j=1,k=0
{ k + + s [ i + k ] = = s [ j + k ] k = 0 , i = j , j + + s [ i + k ] < s [ j + k ] 待证明一 k = 0 , i + = k + 1 s [ i + k ] > s [ j + k ] 待证明二 \begin{cases} k++ & s[i+k]==s[j+k] \\ k=0,i=j,j++& s[i+k] < s[j+k] & 待证明一\\ k=0,i+= k+1 & s[i+k] > s[j+k] & 待证明二\\ \end{cases} k++k=0,i=j,j++k=0,i+=k+1s[i+k]==s[j+k]s[i+k]<s[j+k]s[i+k]>s[j+k]待证明一待证明二

待证明一

显然s[j,n)的字典序大于s[i,n)结合性质二,s[j,n)是 s[x,n)中的最大字典序,x ∈ \in [0,j+1)。

待证明二

令x ∈ \in [j,j+k] ,则len = x - j+1 。
s[x,n)的字典序小于s[i+len,n),结合性质二,s[i+len,n)小于s[i],s[x,n)小于s[i,n)。现在来证明无后效性:
从小到处理len,则:
s[0,j+len)符合性质二,由于s[0,i+len]符合性质二。

超时

多余n-1个a,后面跟一个b。时间复杂度O(nn)。

代码

核心代码

class Solution {
public:string lastSubstring(string s) {int i = 0;for (int j = 1; j < s.length(); ){int k = 0;for (; ((j + k) < s.length()) && (s[j + k] == s[i + k]); k++);int tmp = i;if (s[i + k] < s[j + k]){i = j++;}else{j += k + 1;}			}return s.substr(i);}
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{string s ;{Solution sln;s = "cacacb";auto res = sln.lastSubstring(s);Assert("cb", res);}{Solution sln;s = "abab";auto res = sln.lastSubstring(s);Assert("bab", res);}{Solution sln;s = "leetcode";auto res = sln.lastSubstring(s);Assert("tcode", res);}}

优化

极端情况下,i=j++,执行了n次,k也为n。故时间复杂度为O(nn)。
分两种情况:
一,i+k <= j 不变。
二,i+k > j。下面具体分析:
令m = j-i。
将s[j,j+k)和s[i,i+k)分成若干块,最后一块长度为k%m,前面的块长度都为m,则:
s[j,j+k)的各块分别为:s[j,i) s[i,i+m) s[i+m,i+m2) ⋯ \cdots
s[i,i+k)的个块分别为:s[i,i+m) s[i+m,i+m
2) ⋯ \cdots
→ \rightarrow s[j,i) == s [i,i+m) == s[i+m,i+m*2) ⋯ \cdots
显然s[j,n)淘汰了s[i,n)
x$\in[0,m)
s[j,n)能够淘汰s[j+n,n) 因为s[i,n)删除前m个字符,s[i+x,n)删除就是两者。
同理:s[j+m,n)能淘汰s[j]和s[j+m+x,n)。
⋮ \vdots
故 i =j + k - (k%m) ⟺ \iff i+m+k - (k%m)
因为 m > k%m ,所以 i+m+k - (k%m) > i+ k,也就i至少增加k。
无论什么情况:
i或j至少有一个至少增加k,故总时间复杂度是O(n)。

代码

class Solution {
public:string lastSubstring(string s) {int i = 0;for (int j = 1; j < s.length(); ){int k = 0;for (; ((j + k) < s.length()) && (s[j + k] == s[i + k]); k++);int tmp = i;if (s[i + k] < s[j + k]){const int m = j - i;if (k > m){i = (j + k - k%m);j = i + 1;}else{i = j++;}}else{j += k + 1;}			}return s.substr(i);}
};

2023年5月版

class Solution {
public:
string lastSubstring(string s) {
int iMaxIndex = 0;
for (int i = 1; i < s.length(); i++)
{
int k = 0;
for (; (i + k < s.length()) && (s[i + k] == s[iMaxIndex + k]); k++)
{
}
if ((i + k < s.length()) && (s[i + k] > s[iMaxIndex + k]))
{
auto tmp = iMaxIndex;
iMaxIndex = i;
i = max(i,tmp+k);
}
else
{
i = i + k ;
}
}
return s.substr(iMaxIndex);
}
};

2024年2月版

class Solution {
public:
string lastSubstring(string s) {
int i = 0;
for (int j = 1; j < s.length(); )
{
int k = 0;
for (; ((j + k) < s.length()) && (s[j + k] == s[i + k]); k++);
int tmp = i;
if (s[i + k] < s[j + k])
{
const int m = j - i;
if (k > m)
{
i += k+1;
j = i + 1;
}
else
{
i = j++;
}
}
else
{
j += k + 1;
}
}
return s.substr(i);
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【字符串】【分类讨论】【KMP】1163. 按字典序排在最后的子串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790336

相关文章

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Java 字符串操作之contains 和 substring 方法最佳实践与常见问题

《Java字符串操作之contains和substring方法最佳实践与常见问题》本文给大家详细介绍Java字符串操作之contains和substring方法最佳实践与常见问题,本文结合实例... 目录一、contains 方法详解1. 方法定义与语法2. 底层实现原理3. 使用示例4. 注意事项二、su

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1