求解函数优化问题的改进鲸鱼优化算法

2024-03-08 23:20

本文主要是介绍求解函数优化问题的改进鲸鱼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、基本鲸鱼优化算法
    • 2、改进鲸鱼优化算法
      • (1)自适应非线性位置更新
      • (2)引入差分变异操作
  • 二、EWOA算法流程图
  • 三、仿真实验与结果分析
  • 四、参考文献

一、理论基础

1、基本鲸鱼优化算法

请参考这里。

2、改进鲸鱼优化算法

(1)自适应非线性位置更新

本文将自适应策略引入WOA算法的位置更新公式中,加快算法收敛速度、提高算法的寻优精度。具体公式如下: X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ < 1 p < 0.5 (1) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|<1\,\,\, p<0.5\tag{1} X (t+1)=S1X (t)S2A D ,A<1p<0.5(1) X → ( t + 1 ) = S 1 ⋅ X → r a n d ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ ≥ 1 p < 0.5 (2) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X_{rand}(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|≥1\,\,\, p<0.5\tag{2} X (t+1)=S1X rand(t)S2A D ,A1p<0.5(2) X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) + D → ′ ⋅ e b l ⋅ c o s ( 2 π l ) , p ≥ 0.5 (3) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)+\overrightarrow D'\cdot e^{bl}\cdot cos(2\pi l),\quad p≥0.5\tag{3} X (t+1)=S1X (t)+D eblcos(2πl),p0.5(3)其中, S 1 S_1 S1 S 2 S_2 S2分别为当前最优位置和包围步长的自适应调整系数,具体公式表示为: S 1 = − γ ⋅ [ c o s ( π ⋅ t T ) − λ ] (4) S_1=-\gamma\cdot[cos(\pi\cdot \frac tT)-\lambda]\tag{4} S1=γ[cos(πTt)λ](4) S 2 = γ ⋅ [ c o s ( π ⋅ t T ) + λ ] (5) S_2=\gamma\cdot[cos(\pi\cdot\frac tT)+\lambda]\tag{5} S2=γ[cos(πTt)+λ](5)其中, γ \gamma γ表示 S 1 S_1 S1 S 2 S_2 S2变化取值范围; λ \lambda λ表示 S 1 S_1 S1 S 2 S_2 S2取值步长,其取值分别为0.5和1。
从式(4)和式(5)不难看出,自适应调整系数 S 1 S_1 S1随着算法迭代进化呈非线性增大趋势,使种群能够充分朝向精英猎物位置移动;而 S 2 S_2 S2随着算法迭代进化而不断减小,使种群在进化后期具有较小的包围步长而加快收敛速度,从而实现算法全局探索与局部搜索能力的平衡,同时加快算法收敛速度,提高算法的寻优精度。

(2)引入差分变异操作

本文针对WOA算法容易陷入局部最优这一问题,引入差分变异思想,改善算法易陷入局部最优及出现早熟收敛现象。
差分变异思想具体描述如下:
(1)变异操作
选取当前种群中较优的鲸鱼个体进行变异,能够有效扩大算法的搜索域,避免算法陷入局部最优。具体操作如下: V → i ( t + 1 ) = X → i ( t ) + F ( X → r 1 ( t ) − X → r 2 ( t ) ) (6) \overrightarrow V_i(t+1)=\overrightarrow X_i(t)+F(\overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t))\tag{6} V i(t+1)=X i(t)+F(X r1(t)X r2(t))(6)其中, V → i ( t + 1 ) \overrightarrow V_i(t+1) V i(t+1)表示变异后的第 i i i只鲸鱼的位置; F F F表示缩放比例因子; X → r 1 ( t ) − X → r 2 ( t ) \overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t) X r1(t)X r2(t)表示当前迭代次数下鲸鱼位置的差异向量。
(2)选择操作
选择操作是将变异后的新个体与原始个体进行比较,判断其适应度值是否较优,如果较优,则保留,否则舍弃。差分进化算法中通常采用贪婪选择,具体公式如下: X → i ( t + 1 ) = { V → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) < f i t ( X → i ( t ) ) X → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) ≥ f i t ( X → i ( t ) ) (7) \overrightarrow X_i(t+1)=\begin{dcases}\overrightarrow V_i(t+1),\quad fit(\overrightarrow V_i(t+1))<fit(\overrightarrow X_i(t))\\\overrightarrow X_i(t+1),\quad fit(\overrightarrow V_i(t+1))≥fit(\overrightarrow X_i(t))\end{dcases}\tag{7} X i(t+1)={V i(t+1),fit(V i(t+1))<fit(X i(t))X i(t+1),fit(V i(t+1))fit(X i(t))(7)

二、EWOA算法流程图

在这里插入图片描述

图1 EWOA算法流程图

三、仿真实验与结果分析

实验中,设置算法的种群规模为 N = 30 N=30 N=30,最大迭代次数为 T = 500 T=500 T=500。以F1、F2、F3为例。
在这里插入图片描述

图2 F1

在这里插入图片描述

图3 F2

在这里插入图片描述

图4 F3

实验结果表明,本文算法具有较好的有效性和优越性。

四、参考文献

[1] 何庆, 魏康园, 徐钦帅. 求解函数优化问题的改进鲸鱼优化算法[J]. 微电子学与计算机, 2019, 36(4): 72-77+83.

这篇关于求解函数优化问题的改进鲸鱼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788753

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.