求解函数优化问题的改进鲸鱼优化算法

2024-03-08 23:20

本文主要是介绍求解函数优化问题的改进鲸鱼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、基本鲸鱼优化算法
    • 2、改进鲸鱼优化算法
      • (1)自适应非线性位置更新
      • (2)引入差分变异操作
  • 二、EWOA算法流程图
  • 三、仿真实验与结果分析
  • 四、参考文献

一、理论基础

1、基本鲸鱼优化算法

请参考这里。

2、改进鲸鱼优化算法

(1)自适应非线性位置更新

本文将自适应策略引入WOA算法的位置更新公式中,加快算法收敛速度、提高算法的寻优精度。具体公式如下: X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ < 1 p < 0.5 (1) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|<1\,\,\, p<0.5\tag{1} X (t+1)=S1X (t)S2A D ,A<1p<0.5(1) X → ( t + 1 ) = S 1 ⋅ X → r a n d ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ ≥ 1 p < 0.5 (2) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X_{rand}(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|≥1\,\,\, p<0.5\tag{2} X (t+1)=S1X rand(t)S2A D ,A1p<0.5(2) X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) + D → ′ ⋅ e b l ⋅ c o s ( 2 π l ) , p ≥ 0.5 (3) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)+\overrightarrow D'\cdot e^{bl}\cdot cos(2\pi l),\quad p≥0.5\tag{3} X (t+1)=S1X (t)+D eblcos(2πl),p0.5(3)其中, S 1 S_1 S1 S 2 S_2 S2分别为当前最优位置和包围步长的自适应调整系数,具体公式表示为: S 1 = − γ ⋅ [ c o s ( π ⋅ t T ) − λ ] (4) S_1=-\gamma\cdot[cos(\pi\cdot \frac tT)-\lambda]\tag{4} S1=γ[cos(πTt)λ](4) S 2 = γ ⋅ [ c o s ( π ⋅ t T ) + λ ] (5) S_2=\gamma\cdot[cos(\pi\cdot\frac tT)+\lambda]\tag{5} S2=γ[cos(πTt)+λ](5)其中, γ \gamma γ表示 S 1 S_1 S1 S 2 S_2 S2变化取值范围; λ \lambda λ表示 S 1 S_1 S1 S 2 S_2 S2取值步长,其取值分别为0.5和1。
从式(4)和式(5)不难看出,自适应调整系数 S 1 S_1 S1随着算法迭代进化呈非线性增大趋势,使种群能够充分朝向精英猎物位置移动;而 S 2 S_2 S2随着算法迭代进化而不断减小,使种群在进化后期具有较小的包围步长而加快收敛速度,从而实现算法全局探索与局部搜索能力的平衡,同时加快算法收敛速度,提高算法的寻优精度。

(2)引入差分变异操作

本文针对WOA算法容易陷入局部最优这一问题,引入差分变异思想,改善算法易陷入局部最优及出现早熟收敛现象。
差分变异思想具体描述如下:
(1)变异操作
选取当前种群中较优的鲸鱼个体进行变异,能够有效扩大算法的搜索域,避免算法陷入局部最优。具体操作如下: V → i ( t + 1 ) = X → i ( t ) + F ( X → r 1 ( t ) − X → r 2 ( t ) ) (6) \overrightarrow V_i(t+1)=\overrightarrow X_i(t)+F(\overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t))\tag{6} V i(t+1)=X i(t)+F(X r1(t)X r2(t))(6)其中, V → i ( t + 1 ) \overrightarrow V_i(t+1) V i(t+1)表示变异后的第 i i i只鲸鱼的位置; F F F表示缩放比例因子; X → r 1 ( t ) − X → r 2 ( t ) \overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t) X r1(t)X r2(t)表示当前迭代次数下鲸鱼位置的差异向量。
(2)选择操作
选择操作是将变异后的新个体与原始个体进行比较,判断其适应度值是否较优,如果较优,则保留,否则舍弃。差分进化算法中通常采用贪婪选择,具体公式如下: X → i ( t + 1 ) = { V → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) < f i t ( X → i ( t ) ) X → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) ≥ f i t ( X → i ( t ) ) (7) \overrightarrow X_i(t+1)=\begin{dcases}\overrightarrow V_i(t+1),\quad fit(\overrightarrow V_i(t+1))<fit(\overrightarrow X_i(t))\\\overrightarrow X_i(t+1),\quad fit(\overrightarrow V_i(t+1))≥fit(\overrightarrow X_i(t))\end{dcases}\tag{7} X i(t+1)={V i(t+1),fit(V i(t+1))<fit(X i(t))X i(t+1),fit(V i(t+1))fit(X i(t))(7)

二、EWOA算法流程图

在这里插入图片描述

图1 EWOA算法流程图

三、仿真实验与结果分析

实验中,设置算法的种群规模为 N = 30 N=30 N=30,最大迭代次数为 T = 500 T=500 T=500。以F1、F2、F3为例。
在这里插入图片描述

图2 F1

在这里插入图片描述

图3 F2

在这里插入图片描述

图4 F3

实验结果表明,本文算法具有较好的有效性和优越性。

四、参考文献

[1] 何庆, 魏康园, 徐钦帅. 求解函数优化问题的改进鲸鱼优化算法[J]. 微电子学与计算机, 2019, 36(4): 72-77+83.

这篇关于求解函数优化问题的改进鲸鱼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788753

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.