Python机器学习实践(二)K近邻分类(简单鸾尾花分类)

2024-03-08 22:10

本文主要是介绍Python机器学习实践(二)K近邻分类(简单鸾尾花分类),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python机器学习 学习笔记与实践
环境:win10 + Anaconda3.8

例子二 源自《Python机器学习基础教程》—Andreas C.Muller

任务:鸾尾花的分类。鸾尾花有3个品种:setosa、versicolor、virginica。每种鸾尾花都有4个属性:花瓣的长度和宽度以及花萼的长度和宽度。现在要建立模型根据鸾尾花的4个属性来判断鸾尾花的种类,即分类问题。

1、获取数据

该数据集在scikit-learn的datasets模块中,我们用load_iris函数调用。

#获取鸾尾花数据集并观察键值
from sklearn.datasets import load_iris
iris_dataset=load_iris()
print(iris_dataset.keys())

iris_dataset数据类型是bunch,类似于字典,包含有键和值。运行结果如下:

dict_keys([‘data’, ‘target’, ‘frame’, ‘target_names’, ‘DESCR’, ‘feature_names’, ‘filename’])

(1)'data’是花的四个属性值,‘target’是一个一维数组,data中的每一朵花对应target中的一个数据。target中用0,1,2分别表示三种类型的花。

(2)‘target_names‘’中保存了三种花的名字,‘feature_names’则保存了花的4个属性的名字。

可以自行用print分别打印各个参数,了解数据。

2、处理,显示数据

#将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
#观察数据,看看数据大致规律
import pandas as pd
import matplotlib.pyplot as plt
iris_dataframe=pd.DataFrame(X_train,columns=iris_dataset.feature_names)
grr=pd.plotting.scatter_matrix(iris_dataframe,c=y_train,figsize=(15,15),marker='.', hist_kwds={'bins':50},s=60,alpha=.8)
plt.show()

结果如下:
在这里插入图片描述
其中,反对角线上的图为该属性的直方图。

(1)用 train_test_split 函数将数据集分为两部分,一部分用来训练模型,另一部分用来作为测试集。默认情况下是训练集75%,测试集25%。由于有时候数据集在存储的时候是按一定顺序存储的,故在分片之前,该函数将产生伪随机序列打乱样本数据,而后进行分层。

“random_state”参数是初始化了伪随机序列的种子,从而使每一次运行结果一致。

(2)由于每个样本数据X都有4个属性,故在观察数据时绘制散点图矩阵。要注意如果不加plt.show()则图可能无法显示。

3、K近邻分类并评估

K近邻分类的思想比较简单,就是先保存训练集的结果,然后对于一个新样本过来,该算法在训练集里寻找和新样本“距离最近”的一个样本,并将它的标签进行输出。如果是K近邻,则是寻找“距离最近”的K个样本,然后输出这个样本中最多的类别标签。

例如K=1时有两个属性的样本散点图如下:
在这里插入图片描述
其中三角和圆分别训练集中表示不同的种类,五角星表示测试数据,模型找到与其最近的一个样本,并将该样本的标签给测试数据,图中用颜色表示。

同理,K=3时如下:
在这里插入图片描述
该部分代码如下:

#用K近邻算法分类
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
#用测试集数据评估模型
import numpy as np
y_predict=knn.predict(X_test)
print('Test score is {:.2f}'.format(np.mean(y_predict==y_test)))
#自己输入一个样本数据,看看模型输出结果
X_me=np.array([[5,2.9,1,0.2]])
Pred=knn.predict(X_me)
print('Prediction is : {} '.format(Pred))
print('The type of X_me is : {}'.format(iris_dataset['target_names'][Pred]))

运行结果如下:
在这里插入图片描述

(1)本例在建立KNN模型时将n_neighbors设为1,即寻找“长得最像”的一个样本。

(2)Test score反映了该模型对于测试集的输出效果,即有97%的测试样本预测成功,也可以说对于接下来的新样本,我们有97%的把握认为它是正确的。

(3)在自己创建一个样本的时候,要将数据转为二维矩阵的一行,因为scikit-learn只能接受二维矩阵。

(4)尝试将K近邻改为2和5之后,发现Test score 和预测结果均没有变化。

4、完整代码

#获取鸾尾花数据集并观察键值
from sklearn.datasets import load_iris
iris_dataset=load_iris()
print(iris_dataset.keys())
#将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
#观察数据,看看数据大致规律
import pandas as pd
import matplotlib.pyplot as plt
iris_dataframe=pd.DataFrame(X_train,columns=iris_dataset.feature_names)
grr=pd.plotting.scatter_matrix(iris_dataframe,c=y_train,figsize=(15,15),marker='.', hist_kwds={'bins':50},s=60,alpha=.8)
plt.show()
#用K近邻算法分类
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
#用测试集数据评估模型
import numpy as np
y_predict=knn.predict(X_test)
print('Test score is {:.2f}'.format(np.mean(y_predict==y_test)))
#自己输入一个样本数据,看看模型输出结果
X_me=np.array([[5,2.9,1,0.2]])
Pred=knn.predict(X_me)
print('Prediction is : {} '.format(Pred))
print('The type of X_me is : {}'.format(iris_dataset['target_names'][Pred]))

这篇关于Python机器学习实践(二)K近邻分类(简单鸾尾花分类)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788562

相关文章

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.