LLM 构建Data Muti-Agents 赋能数据分析平台的实践之①:数据采集

本文主要是介绍LLM 构建Data Muti-Agents 赋能数据分析平台的实践之①:数据采集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 概述

在推进产业数字化的过程中,数据作为最重要的资源是优化产业管控过程和提升产业数字化水平的基础一环,如何实现数据采集工作的便利化、高效化、智能化是降低数据分析体系运转成本以及推动数据价值挖掘体系的基础手段。随着数字化在产业端的推进,仅仅依靠各产业各企业内部的业务系统数据是不够的,一方面当前大量的数据集中在互联网,实时的、历史的、以及有价值的数据往往集中在专业行业网站、门户网站;另一方面行业最新的动态、知识更新往往沉淀在互联网平台上。如何将互联网、非结构化文本、图片等数据结构化,作为数据资源体系的重要补充运用到产业数字化中,是进一步挖掘数据价值、补充领域内外知识的重大问题。
以往获取互联网上的数据采取的主要手段就是爬虫,然而这种手段需要较高的代码能力、结构化互联网数据依然需要较大的工作量,而且对于文本知识的结构化通过正则式抽取的方式难以有效统一规则。例如笔者负责构建的农产品市场监测预警系统设计中,为了解决农产品市场数据的抽取、清洗、结构化,采用了正则式抽取文本的方式,然而当文本编写的样式、规则、数据嵌入的方式变化时,还得重新更新正则式库,维护成本奇高。
在这里插入图片描述
图1 通过文本爬取、正则式清洗获取行业网站-瘦肉型白条猪肉出厂价格价格
在前述文章中【LLM赋能产业数智化业务系统升级的思考】我们讨论了将LLM引入数据平台的设想、可行性及应用场景,通过我们的测试输入待抽取数据的网站—>LLM—>清洗入库是可行性的。本文对该设想做一些实践验证,以推动LLM在产业数字化中的落地。

二、整体设计

1、数据的来源将有如下渠道:文本数据块、网页表格块、网页文本块、图片块等。
2、使用langchain或者llamaindex等框架的检索工具,根据prompt的要求检索相关的信息组成知识块。
3、检索的知识块+用户数据格式要求+数据导出方式一起组合成新的提示词{task prompt}输入到大模型中,完成数据的提取及导入。
在这里插入图片描述

三、数据采集实践

1.使用langchain及llama.cpp加载大模型,其他的加载方式请参考blog:LLM RAG 多种方式装载LLM的实践

import os
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
template = """Question: {question}Answer: Let's work this out in a step by step way to be sure we have the right answer."""prompt = PromptTemplate(template=template, input_variables=["question"])
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])n_gpu_layers =0  # Change this value based on your model and your GPU VRAM pool.
n_batch = 5120  # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# Make sure the model path is correct for your system!
llm = LlamaCpp(model_path="./fivetwin/openchat-3.5-0106-GGUF/openchat-3.5-0106.Q4_K_M.gguf",n_gpu_layers=n_gpu_layers,n_batch=n_batch,max_tokens=200000,n_ctx=8912,callback_manager=callback_manager,verbose=True, # Verbose is required to pass to the callback managercontext_window=4096,
)

2、数据获取
(1)网页表格数据结构化获取
我们需要将该网站的生猪报价信息整理成json格式。
建立网页文本的知识块:使用langchain AsyncHtmlLoader获取网页的内容,并向量化。

import pprint
from langchain.document_loaders import AsyncHtmlLoader 
from langchain.document_transformers import Html2TextTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
urls = ["https://zhuanlan.zhihu.com/p/671371646"]
loader = AsyncHtmlLoader(urls)
docs = loader.load()
#print(docs)
# Transform
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs_transformed)
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings)

构建数据抽取解析问答链

from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(memory_key="chat_history", input_key="human_input",return_messages=False)
from langchain.chains import ConversationalRetrievalChain
bot = ConversationalRetrievalChain.from_llm(llm, retriever=vectordb.as_retriever(),memory=memory,verbose=True,return_source_documents=False)

构建数据输出要求及格式:

query = """请根据上下文,查询整理各省市生猪市场价格信息,请使用如下的JSON格式返回数据
{{{{"产地或品牌":"x","规格": "a","单位":"元/公斤","报价": "50","报价提供方":"b","发布时间":"b"}},{{"产地或品牌":"x","规格": "a","单位":"元/公斤","报价": "50","报价提供方":"b","发布时间":"b"}},}}
例如:
{"产地或品牌": "河北石家庄","规格": "外三元;体重:90-100kg; ","单位": "元/公斤","报价": 15.8,"报价提供方": "河北石家庄市","发布时间": "2024-01-30"}},
将数据整理成csv格式,并输出一个叫“生猪市场价格情况表.csv”的文件,可以使用python模块的pandas工具
"""
result = bot.invoke({"question": query})
result["answer"]

结果分析:
1)由下图可以看出LLM-RAG-bot将检索到的知识块与数据格式要求一起组合成promt输入到LLM中
在这里插入图片描述
2)结果LLM-RAG-bot系统的解析成功将数据抽取成用户所需的格式。
在这里插入图片描述
(2)网页文本数据的抽取
大量的数据以文本形式存储在互联网上,如何将其中的有用的信息抽取成结构化的将对于数据资源的补充具有重大意义。接下来将设计一个基于LLM的系统用于文本知识结构化信息抽取,首先我们将互联网上的文本通过爬虫或者其他形式整理成csv,再通过RAG和提示词工程提取其中的结构化信息。
在这里插入图片描述

from langchain.document_loaders.csv_loader import CSVLoader
loader = CSVLoader(file_path="./data.csv")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings)
memory = ConversationBufferMemory(memory_key="chat_history", input_key="human_input",return_messages=False)
bot_data = ConversationalRetrievalChain.from_llm(llm, retriever=vectordb.as_retriever(),memory=memory,verbose=True,return_source_documents=False)

构建提示词工程:

query="""请根据上下文,查询整理文档中农产品价格信息,请使用JSON格式返回数据
{{{{"date":"x","type": "a","unit":"元/公斤","price": "50",.....}},{{"date":"x","type": "a","unit":"元/公斤","price": "50",.....}},}}
例如:
{"date":"7月21日","type": "牛肉","unit":"元/公斤","price": "50",}},

运行RAG系统:

result = bot.invoke({"query": query})
result["answer"]

结果探讨:
1)系统将提示词和检索到的问答合并输入大模型:
在这里插入图片描述
2)输出我们说规定的数据格式:成功将文本中关于农产品的结构化信息提取出来。

在这里插入图片描述

四、小结

通过本次测试,我们成功将大模型及AI Agents的应用场景扩展到数据分析体系中的基础环节——数据采集,可以广泛的应用到互联网网页表格数据抽取、文本数据整理等。

这篇关于LLM 构建Data Muti-Agents 赋能数据分析平台的实践之①:数据采集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788543

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读