23.5.18 pandas中两个DataFrame数据的pd.merge()合并与pd.concat()拼接

2024-03-08 18:40

本文主要是介绍23.5.18 pandas中两个DataFrame数据的pd.merge()合并与pd.concat()拼接,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 DataFrame数据集

1.pd.merge()函数

2.pd.concat()函数


 DataFrame数据集

import pandas as pd
dic1 = {'name':['李四', '王五', '赵六'], 'age':[12, 13, 14],'school':['niujing','qinghau','beida']}
dic2 = {'name':['张三', '李四', '王五'], 'class':['A1', 'A2', 'A3'],'school':['hafo','niujing','qinghau']}
df1 = pd.DataFrame(dic1)
df2 = pd.DataFrame(dic2)

  

1.pd.merge()函数

        pd.merge()函数用于将两个或多个数据帧(DataFrame)按照一定的条件(通常是某些列)进行合并(merge)。

pd.merge(df1,df2,on='列名',how='outer')   #按照指定列将两个数据框进行合并。

 参数:

  • how:合并方式:

                how = ‘inner’(默认),类似于取交集

                how = ‘outer’,类似于取并集

  • on:用于连接的列名,若不指定则以两个Dataframe的列名的交集作为连接键

例:

data = pd.merge(df1,df2,how='outer')  #how = ‘outer’,类似于取列的并集,即把所有列名相同的列合并
print(data)

data = pd.merge(df1,df2)  #默认how='inner',将每每列合并,行取交集

 

data1 = pd.merge(df1,df2,on='name',how='outer') #按照列名‘name’合并,即只将列名为‘name’的那一列合并,其他列不合并
data2 = pd.merge(df1,df2,on=['name','school'],how='outer')#按照列名‘name’和‘school’合并
print(data1)
print(data2)
data1
data2

2.pd.concat()函数

pd.concat()函数用于将两个或多个 Pandas 数据帧(DataFrame)沿着某个轴(通常是行或列)进行连接。这种连接方式称为拼接(concatenation)。它可以沿着指定的轴将多个数据帧连接成一个新的数据帧。

pd.concat([df1, df2], ignore_index=True, join='outer',axis=1)

参数:

  • axis:1轴,按列拼接(增加列);0轴(默认)按行拼接(增加行)
  • join:outer默认(拼接时取并集);inner(拼接时取交集)
  • ignore_index:默认False,即不重置dataframe的索引;True重置索引,从0开始
data = pd.concat([df1, df2])
#等同于
data = pd.concat([df1, df2], ignore_index=False, join='outer',axis=0)
#将df1和df2,按照不重置索引、

data1 = pd.concat([df1, df2], ignore_index=False, join='outer',axis=0)  #按行拼接(增加行),outer表示列取并集
data2 = pd.concat([df1, df2], ignore_index=False, join='outer',axis=1)  #按列拼接(增加列)
data1
data2

data1 = pd.concat([df1, df2], ignore_index=False, join='outer',axis=0)  #按行拼接,列取并集
data = pd.concat([df1, df2], ignore_index=False, join='inner',axis=0)  #按行拼接,列取交集

data1
data2

这篇关于23.5.18 pandas中两个DataFrame数据的pd.merge()合并与pd.concat()拼接的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788030

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

pandas批量拆分与合并Excel文件的实现示例

《pandas批量拆分与合并Excel文件的实现示例》本文介绍了Pandas中基于整数位置的iloc和基于标签的loc方法进行数据索引和切片的操作,并将大Excel文件拆分合并,具有一定的参考价值,感... 目录一、Pandas 进行索引和切编程片的iloc、loc方法二、Pandas批量拆分与合并Exce

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务