基于Pytorch和Vgg16实现图片分类

2024-03-08 09:30

本文主要是介绍基于Pytorch和Vgg16实现图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在基于Pytorch框架补一些CNN的基础知识,学会自己写简单的卷积神经网络,从加载数据集到训练模型、测试模型、保存模型和输出测试结果,现在来总结一下。

首先基于Pytorch实现Vgg16网络,命名为model.py(可为其他任意名字,但是后续导入时要记得更改)

import torch
import torch.nn as nnclass VGG16(nn.Module):def __init__(self):super(VGG16, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(3, 64, 3, 1, 1),nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(64, 64, 3, 1, 1),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(2, 2))self.layer2 = nn.Sequential(nn.Conv2d(64, 128, 3, 1, 1),nn.BatchNorm2d(128),nn.ReLU(),nn.Conv2d(128, 128, 3, 1, 1),nn.BatchNorm2d(128),nn.ReLU(),nn.MaxPool2d(2, 2))self.layer3 = nn.Sequential(nn.Conv2d(128, 256, 3, 1, 1),nn.BatchNorm2d(256),nn.ReLU(),nn.Conv2d(256, 256, 3, 1, 1),nn.BatchNorm2d(256),nn.ReLU(),nn.Conv2d(256, 256, 3, 1, 1),nn.BatchNorm2d(256),nn.ReLU(),nn.MaxPool2d(2, 2))self.layer4 = nn.Sequential(nn.Conv2d(256, 512, 3, 1, 1),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(512, 512, 3, 1, 1),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(512, 512, 3, 1, 1),nn.BatchNorm2d(512),nn.ReLU(),nn.MaxPool2d(2, 2))self.layer5 = nn.Sequential(nn.Conv2d(512, 512, 3, 1, 1),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(512, 512, 3, 1, 1),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(512, 512, 3, 1, 1),nn.BatchNorm2d(512),nn.ReLU(),nn.MaxPool2d(2, 2))self.fc1 = nn.Sequential(nn.Flatten(),nn.Linear(512, 512),nn.ReLU(),nn.Dropout())self.fc2 = nn.Sequential(nn.Linear(512, 256),nn.ReLU(),nn.Dropout())self.fc3 = nn.Linear(256, 10)def forward(self, x):x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.layer5(x)x = self.fc1(x)x = self.fc2(x)x = self.fc3(x)return xif __name__ == '__main__':VGG16 = VGG16()input = torch.ones((64, 3, 32, 32))output = VGG16(input)print(output.shape)

然后编写训练文件,导入需要的库(有些库没有的话需要提前安装)。

import torchvision
from torch import optim
from torch.utils.data import DataLoader
import torch.nn as nn
from model import *
import matplotlib.pyplot as plt
import time

下载CIFAR10数据集,并设置batch_size,第一次运行时会自动下载,之后直接加载已经下载好的。当然也可以使用其他数据集,从官方文档https://pytorch.org/vision/stable/datasets.html可以看到有各种用于分类、分割、检测等其他视觉任务的数据集,但是为了方便学习,这里选择较小的CIFAR10数据集。

rain_data = torchvision.datasets.CIFAR10(root="data", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="data", train=False, transform=torchvision.transforms.ToTensor(),download=True)
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

创建记录文档,名字为当下时间,将训练过程和结果保存并打印出来。

t = time.strftime('%Y-%m-%d_%H-%M-%S')  # 切记中间符号不能用冒号,不然会报错
file = open('logs/{}.txt'.format(t), 'w')
train_data_size = len(train_data)
test_data_size = len(test_data)
print('The size of train_data:{}'.format(train_data_size))
file.write('The size of train_data:{}'.format(train_data_size)+'\n')
print('The size of train_data:{}'.format(test_data_size))
file.write('The size of train_data:{}'.format(test_data_size)+'\n')

创建一些中间参数,配置损失函数和优化器,也可从官方文档中选择其他损失函数torch.nn.functional — PyTorch 1.11.0 documentation和优化器torch.optim — PyTorch 1.11.0 documentation

epoch = 10
train_step = 0
test_step = 0vgg16 = VGG16()  # 实例化网络
loss_fn = nn.CrossEntropyLoss()  learning_rate = 1e-2
# optimizer = optim.SGD(vgg16.parameters(), lr=learning_rate, momentum=0.9)
optimizer = optim.Adam(vgg16.parameters(), lr=learning_rate)losses = []  # 用于存储损失值,便于后面画损失变化曲线图

开始训练

for i in range(epoch):print('-----epoch{}-----'.format(i))file.write('-----epoch{}-----'.format(i)+'\n')# 训练步骤开始vgg16.train()for data in train_dataloader:images, targets = dataoutput = vgg16(images)loss = loss_fn(output, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()train_step += 1if train_step % 50 == 0:print('train_step:{},loss:{}'.format(train_step, loss.item()))file.write('train_step:{},loss:{}'.format(train_step, loss.item())+'\n')losses.append(loss.item())# 测试步骤开始vgg16.eval()accuracy = 0with torch.no_grad():for data in test_dataloader:images, targets = dataoutput = vgg16(images)current_acc = (output.argmax(1) == targets).sum()accuracy += current_accacc = accuracy / test_data_sizeprint('-------eval accuracy:{}'.format(acc))file.write('-------eval accuracy:{}'.format(acc)+'\n')torch.save(tudui, 'checkpoints/vgg16_{}.pth'.format(i))print('The model has been saved')file.write('The model has been saved')file.close()

保存的记录文档和打印输出如下所示

 

画出损失曲线变化图

plt.subplot(1, 1, 1)
plt.plot(losses, label='Training Loss')
plt.title('Training Loss')
plt.legend()
plt.show()

 编写测试文件,将训练好的模型用于预测任意图片的类别。

import torch
from PIL import Image
from torchvision import transformsimage_path = 'imgs/dog.jpg'  # 随意选择一张图片进行测试
image = Image.open(image_path)
image = image.convert('RGB')
transform = transforms.Compose([transforms.Resize(32, 32), transforms.ToTensor()])  # 将图片大小改为32×32,并转换为Tensor类型
image = transform(image)classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']model = torch.load('checkpoints/vgg16_30.pth')  # 加载训练好的模型image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():output = model(image)
index = output.argmax(1)
pred = classes[index]
print(pred)

                                 

这篇关于基于Pytorch和Vgg16实现图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786684

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求