Paddle上手实战——NLP经典cls任务“推特文本情感13分类”

2024-03-08 07:20

本文主要是介绍Paddle上手实战——NLP经典cls任务“推特文本情感13分类”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Paddle上手实战——NLP经典cls任务“推特文本情感13分类”

实战背景介绍

数据地址:https://www.heywhale.com/home/activity/detail/611cbe90ba12a0001753d1e9/content

Twitter推文具备多重特性,首要之处在于其与Facebook的显著区别——其完全基于文本形式,通过Twitter接口可轻松注册并下载,从而便于作为自然语言处理研究所需的语料库。此外,Twitter明确规定了每篇推文的长度上限为140个字符,实际推文的长短各异,但普遍偏短,部分推文甚至仅包含一个句子或短语,这增加了对其进行情感分类标注的复杂性和挑战性。再者,推文往往具有即兴性,内容中富含情感元素,口语化表达较为普遍,缩写和网络用语频繁出现,情绪符号、新词和俚语亦屡见不鲜,这使得其与正式文本存在显著区别。因此,若采用适用于正式文本的情感分类方法对Twitter推文进行情感分析,其效果往往不尽如人意。

公众情感在多个领域,如电影评论、消费者信心、政治选举以及股票走势预测等,正日益展现出其重要的影响力。针对公共媒体内容进行情感分析,已成为分析公众情感的一项基础性任务,其重要性不言而喻。

img

准备数据集

数据集基于推特用户发表的推文数据集,并且针对部分字段做出了一定的调整,所有的字段信息请以本练习赛提供的字段信息为准
字段信息内容参考如下:

  1. tweet_id string 推文数据的唯一ID,比如test_0,train_1024
  2. content string 推特内容
  3. label int 推特情感的类别,共13种情感

其中训练集train.csv包含3w条数据,字段包括tweet_id,content,label;测试集test.csv包含1w条数据,字段包括tweet_id,content。

tweet_id,content,label
tweet_1,Layin n bed with a headache  ughhhh...waitin on your call...,1
tweet_2,Funeral ceremony...gloomy friday...,1
tweet_3,wants to hang out with friends SOON!,2
tweet_4,"@dannycastillo We want to trade with someone who has Houston tickets, but no one will.",3
tweet_5,"I should be sleep, but im not! thinking about an old friend who I want. but he's married now. damn, & he wants me 2! scandalous!",1
tweet_6,Hmmm. 
http://www.djhero.com/ is down,4
tweet_7,@charviray Charlene my love. I miss you,1
tweet_8,cant fall asleep,3

加载数据集

加载数据集

在数据分析和机器学习的项目中,加载数据集是至关重要的一步。数据集的质量、格式和完整性直接影响到后续的分析和模型训练的效果。在本章节中,我们将详细讨论如何加载数据集,并对其进行初步的处理和检查。

一、数据集来源与选择

首先,我们需要明确数据集的来源。数据集可以来自公开的数据仓库、研究机构、商业平台或者通过爬虫等方式自行获取。在选择数据集时,需要考虑数据集的可靠性、时效性、相关性和规模。对于Twitter推文这样的文本数据,我们可能需要从Twitter API或者相关的第三方数据源获取。

二、数据加载方式

数据加载的方式取决于数据的存储格式和所使用的编程环境。对于文本数据,常见的存储格式包括CSV、JSON、TXT等。在Python环境中,我们可以使用pandas库来加载这些数据。

例如,对于CSV格式的数据,可以使用以下代码加载:

import pandas as pd  # 假设数据集名为'tweets.csv'  
data = pd.read_csv('tweets.csv')

对于JSON格式的数据,可以使用:

import pandas as pd  # 假设数据集名为'tweets.json'  
data = pd.read_json('tweets.json')

如果数据存储在数据库中,则需要使用相应的数据库连接和查询语句来加载数据。

三、数据初步处理

加载数据后,通常需要进行一些初步的处理,包括数据清洗、缺失值处理、异常值处理等。对于Twitter推文数据,可能需要去除无关字符、标点符号、停用词等,并进行文本编码转换。

例如,我们可以使用正则表达式来去除推文中的URL和特殊字符:

import re  # 定义一个函数来清洗推文  
def clean_tweet(tweet):  tweet = re.sub(r'http\S+', '', tweet)  # 去除URL  tweet = re.sub(r'[^\w\s]', '', tweet)  # 去除特殊字符  return tweet  # 应用清洗函数到数据集中的每一行  
data['clean_tweet'] = data['tweet'].apply(clean_tweet)

四、数据检查

加载并初步处理数据后,我们需要对数据进行检查,以确保数据的完整性和准确性。这包括检查数据的行数和列数、检查是否有缺失值、检查数据的分布情况等。

# 检查数据集的形状(行数和列数)  
print(data.shape)  # 检查缺失值  
print(data.isnull().sum())  # 查看数据分布(例如,查看某个字段的唯一值数量)  
print(data['column_name'].nunique())

通过这些检查,我们可以对数据的整体情况有一个大致的了解,并为后续的分析和建模工作做好准备。

综上所述,加载数据集是数据分析和机器学习项目中的关键步骤。通过选择合适的数据源、使用适当的加载方式、进行初步的数据处理和检查,我们可以确保数据的质量和可用性,为后续的工作奠定坚实的基础。

本数据集实战代码

tweet_idcontentlabel
0tweet_0@tiffanylue i know i was listenin to bad habi...0
1tweet_1Layin n bed with a headache ughhhh...waitin o...1
2tweet_2Funeral ceremony...gloomy friday...1
3tweet_3wants to hang out with friends SOON!2
4tweet_4@dannycastillo We want to trade with someone w...3
def read(pd_data):for index, item in pd_data.iterrows():       yield {'text': item['content'], 'label': item['label'], 'qid': item['tweet_id'].strip('tweet_')}
# 分割训练集、测试机
from paddle.io import Dataset, Subset
from paddlenlp.datasets import MapDataset
from paddlenlp.datasets import load_datasetdataset = load_dataset(read, pd_data=train,lazy=False)
dev_ds = Subset(dataset=dataset, indices=[i for i in range(len(dataset)) if i % 5 == 1])
train_ds = Subset(dataset=dataset, indices=[i for i in range(len(dataset)) if i % 5 != 1])
for i in range(5):print(train_ds[i])
# 在转换为MapDataset类型
train_ds = MapDataset(train_ds)
dev_ds = MapDataset(dev_ds)
print(len(train_ds))
print(len(de

这篇关于Paddle上手实战——NLP经典cls任务“推特文本情感13分类”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786418

相关文章

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、