R语言,实现MACD指标计算:股票技术分析的利器系列(1)

2024-03-08 06:36

本文主要是介绍R语言,实现MACD指标计算:股票技术分析的利器系列(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言,实现MACD指标计算:股票技术分析的利器系列(1)

    • MACD指标
    • 代码
    • 完整代码
      • 介绍代码
        • EMA函数
        • calculate_DEA 函数
        • calculate_MACD 函数
    • 运行结果


MACD指标

先看看官方介绍:

MACD (平滑异同平均线)
指标说明
DIF线:收盘价短期、长期指数平滑移动平均线间的差;
DEA线:DIF线的M日指数平滑移动平均线;
MACD线:DIF线与DEA线的差,彩色柱状线;
参数:SHORT(短期)、LONG(长期)、M 天数,一般为12、26、9。
用法
1.DIF、DEA均为正,DIF向上突破DEA,买入信号;
2.DIF、DEA均为负,DIF向下跌破DEA,卖出信号;
3.DEA线与K线发生背离,行情反转信号;
4.分析MACD柱状线,由红变绿(正变负),卖出信号;由绿变红,买入信号。

算法解释:

DIF:EMA(CLOSE,SHORT)-EMA(CLOSE,LONG);
DEA:EMA(DIF,MID);
MACD:(DIF-DEA)*2,COLORSTICK;

优势:

优势描述
趋势跟踪能力强MACD能够帮助识别市场的趋势方向,尤其是短期和长期趋势的转折点。通过观察DIF和DEA线的交叉,可以提供买入和卖出的时机。
清晰的信号MACD的交叉点和柱状线的变化提供了清晰的交易信号,使得投资者能够更容易地进行决策。
背离信号当DEA线与价格走势产生背离时,往往暗示着市场趋势即将发生变化,这为投资者提供了及时的行动信号。
柱状线变化反映市场动能MACD柱状线的颜色变化反映了市场的动能变化,红色代表正能量增强,绿色代表负能量增强,这有助于投资者了解市场情绪和力量的变化。

劣势:

劣势描述
滞后性MACD是一种滞后指标,它基于移动平均线的计算,因此在市场趋势发生变化之后才会发出信号,有时可能会错过市场的最佳买入或卖出时机。
假信号由于MACD的计算方式,有时会出现假信号,即在市场波动较大或横盘震荡时,可能会产生交叉但并未发生实际的趋势转折。
单一性MACD虽然能够提供趋势判断和交易信号,但它并不能完全覆盖市场的全部信息,投资者在使用时仍需要结合其他指标和技术分析方法进行综合判断。

代码

完整代码

请将下面代码的 C:/Users/daoli/Desktop/stock_demo/MACD 替换你们自己的工作路径

# 设置工作目录为MACD文件夹
setwd("C:/Users/daoli/Desktop/stock_demo/MACD")
# 打印当前工作目录
print(getwd())# 导入stock_data.R中的函数和数据
source('stock_data.R')# 定义函数计算指数移动平均线(Exponential Moving Average,EMA)
# 参数:
#   x: 输入数据
#   n: 平滑因子
# 返回值:
#   指数移动平均线
EMA <- function(x, n) {ema <- numeric(length(x))ema[1] <- x[1]alpha <- 2 / (n + 1)for (i in 2:length(x)) {ema[i] <- alpha * x[i] + (1 - alpha) * ema[i - 1]}return(ema)
}# 计算DIF指标
# 参数:
#   close: 收盘价数据
#   short: 短期平滑因子
#   long: 长期平滑因子
# 返回值:
#   DIF指标
calculate_DIF <- function(close, short, long) {dif <- EMA(close, short) - EMA(close, long)return(dif)
}# 计算DEA指标
# 参数:
#   dif: DIF指标数据
#   mid: 中期平滑因子
# 返回值:
#   DEA指标
calculate_DEA <- function(dif, mid) {dea <- EMA(dif, mid)return(dea)
}# 计算MACD指标
# 参数:
#   dif: DIF指标数据
#   dea: DEA指标数据
# 返回值:
#   MACD指标
calculate_MACD <- function(dif, dea) {macd <- (dif - dea) * 2return(macd)
}# 参数设置
SHORT <- 12
LONG <- 26
MID <- 9# 计算指标
dif <- calculate_DIF(stock_data$CLOSE, SHORT, LONG)
dea <- calculate_DEA(dif, MID)
macd <- calculate_MACD(dif, dea)# 将计算得到的指标合并到原始数据中
stock_data <- cbind(stock_data,DIF = round(dif, 2),DEA = round(dea, 2),MACD = round(macd, 2)
)# 根据日期字段倒序排列并展示数据
stock_data <-stock_data[order(stock_data$DATE, decreasing = TRUE), ]
View(stock_data)

介绍代码

EMA函数
# 定义函数计算指数移动平均线(Exponential Moving Average,EMA)
# 参数:
#   x: 输入数据
#   n: 平滑因子
# 返回值:
#   指数移动平均线
EMA <- function(x, n) {ema <- numeric(length(x))ema[1] <- x[1]alpha <- 2 / (n + 1)for (i in 2:length(x)) {ema[i] <- alpha * x[i] + (1 - alpha) * ema[i - 1]}return(ema)
}
  1. EMA <- function(x, n) {: 这一行定义了一个函数 EMA,接受两个参数 xn,其中 x 是一个数值型向量,包含要计算EMA的数据,n 是一个整数,代表指数平滑的窗口大小。

  2. ema <- numeric(length(x)): 这一行创建了一个名为 ema 的空数值型向量,其长度与输入向量 x 的长度相同,用来存储计算得到的 EMA。

  3. ema[1] <- x[1]: 这一行将 ema 向量的第一个元素设置为输入向量 x 的第一个元素,作为初始值。

  4. alpha <- 2 / (n + 1): 这一行计算了一个常数 alpha,用于指数平滑计算中的权重。alpha 的计算公式为 2 / (n + 1),其中 n 是平滑窗口大小。

  5. for (i in 2:length(x)) {: 这一行开启了一个循环,从输入向量 x 的第二个元素开始,直到最后一个元素。

  6. ema[i] <- alpha * x[i] + (1 - alpha) * ema[i - 1]: 这一行计算了当前时刻 i 的 EMA,根据指数平滑的公式:新EMA值等于当前值乘以权重 alpha 再加上上一个EMA值乘以权重 (1 - alpha)

  7. return(ema): 这一行返回计算得到的 EMA 向量。

calculate_DEA 函数
calculate_DEA <- function(dif, mid) {dea <- EMA(dif, mid)return(dea)
}
  1. calculate_DIF <- function(close, short, long) {: 这一行定义了一个函数 calculate_DIF,接受三个参数:close 是一个数值型向量,包含股价收盘价的数据;shortlong 是两个整数,分别代表短期和长期的指数平滑窗口大小。

  2. dif <- EMA(close, short) - EMA(close, long): 这一行计算了两个不同长度的指数移动平均线之间的差异值(DIF)。首先调用了之前定义的 EMA 函数来计算 close 向量的短期和长期EMA值,然后将短期EMA值减去长期EMA值得到差异值 dif

  3. return(dif): 这一行返回计算得到的差异值 dif

calculate_MACD 函数
calculate_MACD <- function(dif, dea) {macd <- (dif - dea) * 2return(macd)
}

这段代码定义了一个函数 calculate_MACD,用于计算移动平均收敛-发散指标(Moving Average Convergence Divergence,MACD)。下面是对每一行代码的解释:

  1. calculate_MACD <- function(dif, dea) {: 这一行定义了一个函数 calculate_MACD,接受两个参数:dif 是一个数值型向量,代表差异值;dea 也是一个数值型向量,代表差异值的指数移动平均线(DEA)。

  2. macd <- (dif - dea) * 2: 这一行计算了MACD值,首先从差异值 dif 中减去差异值的指数移动平均线 dea,然后将结果乘以2。

  3. return(macd): 这一行返回计算得到的MACD值。

运行结果

在这里插入图片描述

这篇关于R语言,实现MACD指标计算:股票技术分析的利器系列(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/786317

相关文章

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

Python实现pdf电子发票信息提取到excel表格

《Python实现pdf电子发票信息提取到excel表格》这篇文章主要为大家详细介绍了如何使用Python实现pdf电子发票信息提取并保存到excel表格,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录应用场景详细代码步骤总结优化应用场景电子发票信息提取系统主要应用于以下场景:企业财务部门:需

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点