运用R语言、Tushare对单支股票进行回归分析

2024-03-08 02:50

本文主要是介绍运用R语言、Tushare对单支股票进行回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、数据描述

(一)数据的获取

(二)数据的预处理及分析

二、初步回归分析

(一)模型及变量

(二)参数估计

(三)假设检验

1. 回归显著性检验

2. 回归系数的显著性检验

3. 回归子集的显著性检验

三、变量选择

(一)最优子集选择

(二)逐步回归

(三)最终模型

(四)假设检验

1. 回归显著性检验

2. 回归系数的显著性检验

(六)残差分析

四、多重共线性

(一)诊断

1. 相关系数

2. 方差膨胀因子(VIF)

3. 特征系统分析

(二)主成分回归

1. 主成分分析

2. 主成分回归

(三)岭回归

五、模型效果及结果分析

(一)训练集

(二)测试集


一、数据描述

(一)数据的获取

        本文选取2020年6月1日到2021年9月30日之间顺丰控股股票的相关数据作为训练集、2021年10月8日到2021年12月17日的顺丰控股股票的相关数据作为测试集,其中指标为交易日期(trade_date)、股票代码(ts_code)、开盘价(open)、最高价(high)、最低价(low)、收盘价(close)、前一日收盘价(pre_close)、涨跌额(change)、涨跌幅(pct_chg)、成交量(vol)、成交额(amount)及换手率(turnover_rate)。以上均通过tushare网站(个人ID:411335)的数据接口运用python获取:

import tushare as ts
import pandas as pdts.set_token('Your Token') # 输入个人Tushare接口
pro=ts.pro_api()df1 = ts.pro_bar(ts_code='002352.SZ', adj='qfq', start_date='20200601', end_date='20210930',factors=['tor'])
df1 = df1[::-1]
df1.to_csv("data_train.csv")df2 = ts.pro_bar(ts_code='002352.SZ', adj='qfq', start_date='20211008', end_date='20211217',factors=['tor'])
df2 = df2[::-1]
df2.to_csv("data_test.csv")

(二)数据的预处理及分析

        首先,本文对原始数据进行筛选,保留了研究所需数据,删除了多余及缺失数据。接着,由于本文所感兴趣的是前一日的数据对后一日股票价格的影响,因此将后一日的开盘价及收盘价添加进了数据集中。最后,由于解释变量的数据数量及差异较大,本文对其进行了标准化处理:

# 训练集
train.org = read.csv("data_train.csv")[,-1] 
train.org$trade_date = as.Date(as.character(train.org[,1]),format="%Y%m%d")library(dplyr)
train.need = dplyr::select(train.org, open:close, amount, turnover_rate) # 数据筛选train.Y = train.need$close[-1]
train.X = train.need[-dim(train.need)[1], ]
X.next_open = train.need$open[-1]train.data = cbind(train.X, next_open = X.next_open, next_close = train.Y) # 最终数据
train.scale = data.frame(scale(train.data)) # 标准化数据
head(train.scale)# 测试集
test.org = read.csv("data_test.csv")[,-1]
test.org$trade_date = as.Date(as.character(test.org[,1]),format="%Y%m%d")test.need = dplyr::select(test.org, open:close, amount, turnover_rate)test.Y = test.need$close[-1]
test.X = test.need[-dim(test.need)[1], ]
X.next_open = test.need$open[-1]test.data = cbind(test.X, next_open = X.next_open, next_close = test.Y)
test.scale = data.frame(scale(test.data))
head(test.scale)

        对训练集数据做初步描述性统计,以方便后续分析:

library(ggplot2)
library(ggthemes)# 后一日收盘价走势
p1 = ggplot(train.org) + geom_line(aes(x=trade_date, y=close), lwd=1, col="darkblue") + labs(x="Trade Date",y = "Close Price (RMB)") + theme_economist() + theme(axis.title = element_text(face = "bold"))
p1# 每日收益情况
p2 = train.org %>% mutate(bd=ifelse(pct_chg>=0, ">=0", "<0")) %>% ggplot(aes(x=bd)) + geom_bar(fill=c("green4", "red3"), width=0.3) + labs(x="Profit", y="Count")
p2# 每日涨跌额分布情况
p3 = ggplot(train.org) + geom_density(aes(x=change,colour=I("royalblue")), lwd=1)+labs(x="Difference",y = "Density")
p3

输出:

图1 后一日收盘价走势图

图2 每日收益情况

图3 每日涨跌额分布曲线 

        可以看到,训练集中的数据涨跌次数基本持平,且近似呈现中心分布。

二、初步回归分析

(一)模型及变量

        初步模型为:

这篇关于运用R语言、Tushare对单支股票进行回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785741

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Swagger在java中的运用及常见问题解决

《Swagger在java中的运用及常见问题解决》Swagger插件是一款深受Java开发者喜爱的工具,它在前后端分离的开发模式下发挥着重要作用,:本文主要介绍Swagger在java中的运用及常... 目录前言1. Swagger 的主要功能1.1 交互式 API 文档1.2 客户端 SDK 生成1.3

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb