视野 ▏中美德日四国工业互联网参考架构对比分析

2024-03-08 02:10

本文主要是介绍视野 ▏中美德日四国工业互联网参考架构对比分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文 1798 字25图,建议阅读 15 分钟
本文对中美德日四国工业互联网参考架构进行对比分析 。

【导读】目前在国际上有美国工业互联网参考架构IIRA、德国工业4.0参考架构模型RAMI4.0和日本工业价值链参考架构(Industrial Value Chain Reference Architecture,IVRA)。国内也有工业互联网产业联盟的《工业互联网体系架构》。这几个工业信息化的参考架构,尽管它们的出发点、思考问题的角度和所关注的应用领域各有差异,但它们都是共享着对产业实现全面的信息化的核心理念和技术基础。


中国:AII工业互联网体系架构2.0

2019年8月27日,在2019智博会期间举办的工业互联网高峰论坛上,工业互联网产业联盟发布《工业互联网体系架构2.0》。

美国:IIRA


IIRA(Industrial Internet Reference Architecture)由美国工业互联网联盟(Industrial Internet Consortium , IIC)发布,最新版本为v1.9版,2019年6月19日发布。 IIRA注重跨行业的通用性和互操作性,提供一套方法论和模型,以业务价值推动系统的设计,把数据分析作为核心,驱动工业联网系统从设备到业务信息系统的端到端的全面优化。

美国工业互联网联盟发布的工业互联网参考架构(来自IIC官网)

IIRA功能设计:以数据分析为中心,端到端的功能融合(来自IIC官网)

德国:RAMI4.0

RAMI4.0(Reference Architecture Model Industrie 4.0)即工业4.0参考架构模型,深度聚焦于制造过程和价值链的生命周期,为其建立了一个比较完整的三维模型。这个模型在对在制造环境里不同环节单元的功能的分析、它们之间的互操作性的需求的辨认,以及对相应的标准制定和采用,都十分有价值。更值得关注的是与其相关的工业4.0部件模型,对包括数字化的零部件、设备、产线、车间、工厂、甚至信息化系统在内的所有资产提供一个统一的CPS模型,描述其功能、性能和状态,并为它们之间的交互,从通讯协议、句法和语义,提供统一的界面。其广泛实施,对推动制造环境各个系统的全面互联互通,将会起着非常大的作用。

工业4.0参考架构模型RAMI 4.0

日本:IVRA

日本工业价值链促进会(Industrial Value Chain Initiative,IVI)是一个由制造业企业、设备厂商、系统集成企业等发起的组织,旨在推动“智能工厂”的实现。2016年12月8日,IVI基于日本制造业的现有基础,推出了智能工厂的基本架构《工业价值链参考架构(Industrial Value Chain Reference Architecture ,IVRA)》,从制造业一直追求的质量、成本和效率(产出)传统要素加上环保要求的管理角度出发,结合生产环境的资产(人、流程、产品和工厂)角度和作业流程(计划、执行、查验和反应)角度,细分出智能制造单元,对信息化在生产过程的优化,作了细致的分析,进而提出了智能制造的总体功能模块架构,在不同的(设备、车间、部门和企业)层次上,分析知识/工程流程(相当于产品链)和供给流程(相当于价值链)的各个环节的具体功能构成,颇具有独到之处。

工业价值链参考架构IVRA

IIRA与RAMI4.0对接

在一些大企业促进之下,美国工业互联网联盟和德国工业4.0平台,于2015年11月,在中立的瑞士召开了一次保密的研讨会,如果谈不妥不会公开出来,在市场上造成更大的负面影响,幸亏讨论的结果,双方发现两个参考平台之间有很强的互补性。

结果是这两个机构相继批准双方合作,接着2016年6月在芝加哥,9月在海德堡,召开了另外两次研讨会。这两个机构相继设立了一些任务组,在某些方面探讨双方合作机会。

2017年12月,美国工业互联网联盟与德国工业4.0的机构共同发布了一份关于IIRA与RAMI4.0对接分析的白皮书,指出IIRA与RAMI4.0在概念、方法和模型等方面有不少相互对应和相似之处,而差异之处则互补性很强,相互之间可以取长补短。

这个结论在对降低由于多个架构的存在所带来的不确定性有一定的良好作用。相信这个结论,在这几个架构之间都是适用的。所以,在这个方面加强国际合作,对国内和国际上工业互联网和智能制造的发展都是会有益的。

IIRA与RAMI4.0的功能对接与映射

本文图文来源于工业互联网产业联盟及其它平台,由“THU数据派”公众号整理编辑,仅供行业学习使用,如有侵权请联系我们(chuanru.yin@tsingdata.com)删除。

——END——

这篇关于视野 ▏中美德日四国工业互联网参考架构对比分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785620

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原