随机森林 bagging袋装法(基于bootstrap重抽样自举法)的原理与python实现——机器学习笔记之集成学习 Part 1

本文主要是介绍随机森林 bagging袋装法(基于bootstrap重抽样自举法)的原理与python实现——机器学习笔记之集成学习 Part 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

* * *  The Machine Learning Noting Series  * * *

导航

1 Bootstrap重抽样自举法

2 袋装法(Bagging)

3 随机森林

4 python实现——一个实例

⚫袋装法和随机森林过程基本一样,都是根据bootstrap的一系列样本分别建立决策树,然后用这些决策树投票出结果。最大区别,也就是随机森林更好的原因在于:随机森林在建立决策树时的分组变量存在随机性。

⚫建立大量模型进行投票得出的估计为真值的无偏及一致估计,由此得到的测试误差也是泛化误差真值的无偏估计。

1 Bootstrap重抽样自举法

🍿🍿🍿Bootstrap重抽样自举法的原理与python实现的详细说明,点击参考我的这篇文章。简单介绍:

概念:重抽样自举法(Bootstrap)也叫做自助抽样法或者0.632自举法。

方法:对N个样本,进行B次有放回的重抽样形成B个样本,每个样本包含N个数据。

0.632?:每个样本,每次抽样被抽到的概率为1/N,抽不到的概率为1-1/N,因此N次均未被抽到的概率为\left ( 1-\frac{1}{N} \right )^{N}\approx \frac{1}{e}= 0.368,故整体上也有1-36.8%=63.2%的样本可作为自举样本。

作用:用于估计统计量的标准误(srandard error),比如回归中回归系数的标准误。

2 袋装法(Bagging)

说明:袋装法Bagging 为Bootstrap Aggregating 的缩写,在单个学习器(基于单个bootstrap样本构建的模型,这里是决策树,也可以是贝叶斯分类器,K-邻近等模型)具有高方差和低偏差时很有效。

方法

 测试误差的估计:

  • 应对每个样本观测,得到其作为OOB时基础学习器所给出的预测结果。即若样本观测在建模过程中有q次作为OOB观测,则只有q个基础学习器提供预测值,最终预测结果是这个q值的均值或投票。
  • 袋装法可方便的计算出OOB测试误差,而不必再用其他样本划分方法。
  • 自举次数越多,即建立的估计模型越多,越有助于降低方差,消除测试误差计算结果的随机性。

输入变量重要性的度量:

基于多棵树计算输入变量重要性:计算B棵树异质性下降总和,总和的最大值对应的输入变量重要性最高。

随机森林

原理:独立同分布的B个预测值(由上文的B个学习器产生)Z_{i},i=1,2,...,N,若其方差为\sigma ^{2},两两相关系数为\rho,那么投票结果,即Z的均值的方差为:

Var\left (\overline{Z} \right )=Var\left ( \frac{1}{N} \sum_{i=1}^{N} Z_{i}\right ) = \frac{1}{N} \left [ N\sigma ^{2}+N(N-1))\rho \sigma ^{2} \right ]=\frac{\sigma ^{2}+(N-1)\rho \sigma ^{2}}{N}=\rho \sigma ^{2}+\frac{1-\rho }{N}\sigma ^{2}

袋装法通过增加B来减少方差(上式结果后半部分),在此次基础上,随机森林则进一步通过减少相关性(降低树间的相似性)来降低方差(上式结果前半部分)。

随机森林的随机体现在:①样本随机性,来自于Bootstrap的随机抽样;②属性随机性,树的生成随机选择分类属性。

方法

输入变量重要性的度量

基本思路是,若某个变量影响力大,那么同样的随机噪声,该变量随模型OBB结果影响更大。为了测度重要性,首先计算\widehat{T}^{*(b)} \left ( b=1,2,...,B \right )的OOB测试误差,记为e\left (\widehat{T}^{*(b)} \right )。为了测度第j个输入变量对输出变量的重要性:

1) 随机打乱\widehat{T}^{*(b)}的OOB在第j个输入变量上的取值顺序,重新计算\widehat{T}^{*(b)}基于OOB的测试误差,记为e^{j}\left (\widehat{T}^{*(b)} \right ).

2) 计算第j个输入变量添加噪声后\widehat{T}^{*(b)}的OOB误差的变化:c_{\widehat{T}^{*(b)}}^{j}=e^{j}\left (\widehat{T}^{*(b)} \right )-e\left (\widehat{T}^{*(b)} \right ).

重复上述步骤B次,得到B个c_{\widehat{T}^{*(b)}}^{j},( b=1,2,...,B ),计算其均值\frac{1}{B}\sum_{b=1}^{B}c_{\widehat{T}^{*(b)}}^{j},这就是第j个输入变量添加噪声后随机森林的OOB误差的变化,该误差值越大,表明变量越重要。

随机森林和袋装法的比较

在输入变量较多的情况下,随机森林的优势会更加明显。下图为4个输入变量时不同方法的测试误差变化情况,可以看出随着树数的增加,随机森林的误差最小。具体可见下面的python实例。

4 python实现——一个实例

下面的例子同时实现袋装法和随机森林,并比较其性能。该例子为PM2.5浓度的回归预测,需要数据可向我索要。

#本章需导入的模块
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings(action = 'ignore')
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.model_selection import train_test_split,KFold,cross_val_score
from sklearn import tree
import sklearn.linear_model as LM
from sklearn import ensemble
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.metrics import zero_one_loss,r2_score,mean_squared_error
import xgboost as xgb
# 准备数据
data=pd.read_excel('北京市空气质量数据.xlsx')
data=data.replace(0,np.NaN)
data=data.dropna()
data=data.loc[(data['PM2.5']<=200) & (data['SO2']<=20)]
X=data[['SO2','CO']]
Y=data['PM2.5']
X0=np.array(X.mean()).reshape(1,-1)
# 运行袋装法和随机森林
modelDTC = tree.DecisionTreeRegressor(max_depth=5,random_state=123)
dtrErr=1-cross_val_score(modelDTC,X,Y,cv=10,scoring='r2')
BagY0=[]
bagErr=[]
rfErr=[]
rfY0=[]
for b in np.arange(10,200):Bag=ensemble.BaggingRegressor(base_estimator=modelDTC,n_estimators=b,oob_score=True,random_state=123,bootstrap=True)Bag.fit(X,Y)bagErr.append(1-Bag.oob_score_)BagY0.append(float(Bag.predict(X0)))RF=ensemble.RandomForestRegressor(n_estimators=b,oob_score=True,random_state=123,bootstrap=True,max_features="sqrt")RF.fit(X,Y)      rfErr.append(1-RF.oob_score_)     rfY0.append(float(RF.predict(X0)))
# 可视化结果
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(12,4))
axes[0].axhline(y=dtrErr.mean(),linestyle='-.',label='回归树')
axes[0].plot(np.arange(10,200),bagErr,linestyle='-',label='Bagging回归树(方差=%.3f)'%np.var(BagY0))
axes[0].plot(np.arange(10,200),rfErr,linestyle='--',label='随机森林(方差=%.3f)'%np.var(rfY0))
axes[0].set_title("回归树、Bagging回归树和随机森林")
axes[0].set_xlabel("树的棵树B")
axes[0].set_ylabel("测试误差")
axes[0].legend()axes[1].barh(y=(1,2,3,4),width=RF.feature_importances_,tick_label=X.columns)
axes[1].set_title("输入变量的重要性")
for x,y in enumerate(RF.feature_importances_):    axes[1].text(y+0.01,x+1,'%s' %round(y,3),ha='center')

结果如下图所示,可以看出,当输入变量较多时,随着树数的增加,随机森林的优势逐渐显现,测试误差更低。

这篇关于随机森林 bagging袋装法(基于bootstrap重抽样自举法)的原理与python实现——机器学习笔记之集成学习 Part 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785172

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部