随机森林 bagging袋装法(基于bootstrap重抽样自举法)的原理与python实现——机器学习笔记之集成学习 Part 1

本文主要是介绍随机森林 bagging袋装法(基于bootstrap重抽样自举法)的原理与python实现——机器学习笔记之集成学习 Part 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

* * *  The Machine Learning Noting Series  * * *

导航

1 Bootstrap重抽样自举法

2 袋装法(Bagging)

3 随机森林

4 python实现——一个实例

⚫袋装法和随机森林过程基本一样,都是根据bootstrap的一系列样本分别建立决策树,然后用这些决策树投票出结果。最大区别,也就是随机森林更好的原因在于:随机森林在建立决策树时的分组变量存在随机性。

⚫建立大量模型进行投票得出的估计为真值的无偏及一致估计,由此得到的测试误差也是泛化误差真值的无偏估计。

1 Bootstrap重抽样自举法

🍿🍿🍿Bootstrap重抽样自举法的原理与python实现的详细说明,点击参考我的这篇文章。简单介绍:

概念:重抽样自举法(Bootstrap)也叫做自助抽样法或者0.632自举法。

方法:对N个样本,进行B次有放回的重抽样形成B个样本,每个样本包含N个数据。

0.632?:每个样本,每次抽样被抽到的概率为1/N,抽不到的概率为1-1/N,因此N次均未被抽到的概率为\left ( 1-\frac{1}{N} \right )^{N}\approx \frac{1}{e}= 0.368,故整体上也有1-36.8%=63.2%的样本可作为自举样本。

作用:用于估计统计量的标准误(srandard error),比如回归中回归系数的标准误。

2 袋装法(Bagging)

说明:袋装法Bagging 为Bootstrap Aggregating 的缩写,在单个学习器(基于单个bootstrap样本构建的模型,这里是决策树,也可以是贝叶斯分类器,K-邻近等模型)具有高方差和低偏差时很有效。

方法

 测试误差的估计:

  • 应对每个样本观测,得到其作为OOB时基础学习器所给出的预测结果。即若样本观测在建模过程中有q次作为OOB观测,则只有q个基础学习器提供预测值,最终预测结果是这个q值的均值或投票。
  • 袋装法可方便的计算出OOB测试误差,而不必再用其他样本划分方法。
  • 自举次数越多,即建立的估计模型越多,越有助于降低方差,消除测试误差计算结果的随机性。

输入变量重要性的度量:

基于多棵树计算输入变量重要性:计算B棵树异质性下降总和,总和的最大值对应的输入变量重要性最高。

随机森林

原理:独立同分布的B个预测值(由上文的B个学习器产生)Z_{i},i=1,2,...,N,若其方差为\sigma ^{2},两两相关系数为\rho,那么投票结果,即Z的均值的方差为:

Var\left (\overline{Z} \right )=Var\left ( \frac{1}{N} \sum_{i=1}^{N} Z_{i}\right ) = \frac{1}{N} \left [ N\sigma ^{2}+N(N-1))\rho \sigma ^{2} \right ]=\frac{\sigma ^{2}+(N-1)\rho \sigma ^{2}}{N}=\rho \sigma ^{2}+\frac{1-\rho }{N}\sigma ^{2}

袋装法通过增加B来减少方差(上式结果后半部分),在此次基础上,随机森林则进一步通过减少相关性(降低树间的相似性)来降低方差(上式结果前半部分)。

随机森林的随机体现在:①样本随机性,来自于Bootstrap的随机抽样;②属性随机性,树的生成随机选择分类属性。

方法

输入变量重要性的度量

基本思路是,若某个变量影响力大,那么同样的随机噪声,该变量随模型OBB结果影响更大。为了测度重要性,首先计算\widehat{T}^{*(b)} \left ( b=1,2,...,B \right )的OOB测试误差,记为e\left (\widehat{T}^{*(b)} \right )。为了测度第j个输入变量对输出变量的重要性:

1) 随机打乱\widehat{T}^{*(b)}的OOB在第j个输入变量上的取值顺序,重新计算\widehat{T}^{*(b)}基于OOB的测试误差,记为e^{j}\left (\widehat{T}^{*(b)} \right ).

2) 计算第j个输入变量添加噪声后\widehat{T}^{*(b)}的OOB误差的变化:c_{\widehat{T}^{*(b)}}^{j}=e^{j}\left (\widehat{T}^{*(b)} \right )-e\left (\widehat{T}^{*(b)} \right ).

重复上述步骤B次,得到B个c_{\widehat{T}^{*(b)}}^{j},( b=1,2,...,B ),计算其均值\frac{1}{B}\sum_{b=1}^{B}c_{\widehat{T}^{*(b)}}^{j},这就是第j个输入变量添加噪声后随机森林的OOB误差的变化,该误差值越大,表明变量越重要。

随机森林和袋装法的比较

在输入变量较多的情况下,随机森林的优势会更加明显。下图为4个输入变量时不同方法的测试误差变化情况,可以看出随着树数的增加,随机森林的误差最小。具体可见下面的python实例。

4 python实现——一个实例

下面的例子同时实现袋装法和随机森林,并比较其性能。该例子为PM2.5浓度的回归预测,需要数据可向我索要。

#本章需导入的模块
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings(action = 'ignore')
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.model_selection import train_test_split,KFold,cross_val_score
from sklearn import tree
import sklearn.linear_model as LM
from sklearn import ensemble
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.metrics import zero_one_loss,r2_score,mean_squared_error
import xgboost as xgb
# 准备数据
data=pd.read_excel('北京市空气质量数据.xlsx')
data=data.replace(0,np.NaN)
data=data.dropna()
data=data.loc[(data['PM2.5']<=200) & (data['SO2']<=20)]
X=data[['SO2','CO']]
Y=data['PM2.5']
X0=np.array(X.mean()).reshape(1,-1)
# 运行袋装法和随机森林
modelDTC = tree.DecisionTreeRegressor(max_depth=5,random_state=123)
dtrErr=1-cross_val_score(modelDTC,X,Y,cv=10,scoring='r2')
BagY0=[]
bagErr=[]
rfErr=[]
rfY0=[]
for b in np.arange(10,200):Bag=ensemble.BaggingRegressor(base_estimator=modelDTC,n_estimators=b,oob_score=True,random_state=123,bootstrap=True)Bag.fit(X,Y)bagErr.append(1-Bag.oob_score_)BagY0.append(float(Bag.predict(X0)))RF=ensemble.RandomForestRegressor(n_estimators=b,oob_score=True,random_state=123,bootstrap=True,max_features="sqrt")RF.fit(X,Y)      rfErr.append(1-RF.oob_score_)     rfY0.append(float(RF.predict(X0)))
# 可视化结果
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(12,4))
axes[0].axhline(y=dtrErr.mean(),linestyle='-.',label='回归树')
axes[0].plot(np.arange(10,200),bagErr,linestyle='-',label='Bagging回归树(方差=%.3f)'%np.var(BagY0))
axes[0].plot(np.arange(10,200),rfErr,linestyle='--',label='随机森林(方差=%.3f)'%np.var(rfY0))
axes[0].set_title("回归树、Bagging回归树和随机森林")
axes[0].set_xlabel("树的棵树B")
axes[0].set_ylabel("测试误差")
axes[0].legend()axes[1].barh(y=(1,2,3,4),width=RF.feature_importances_,tick_label=X.columns)
axes[1].set_title("输入变量的重要性")
for x,y in enumerate(RF.feature_importances_):    axes[1].text(y+0.01,x+1,'%s' %round(y,3),ha='center')

结果如下图所示,可以看出,当输入变量较多时,随着树数的增加,随机森林的优势逐渐显现,测试误差更低。

这篇关于随机森林 bagging袋装法(基于bootstrap重抽样自举法)的原理与python实现——机器学习笔记之集成学习 Part 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785172

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1