Python 中实现 CDF 累积分布图的两种方法

2024-03-07 21:36

本文主要是介绍Python 中实现 CDF 累积分布图的两种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是累积分布

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(Cumulative Distribution Function)标记。
《百度百科》

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(CumulativeDistributionFunction)标记。累积分布图(distribution diagram)是在一组依大小顺序排列的测量值中,当按一定的组即分组时出现测量值小于某个数值的频数或额率对组限的分布图。

简单理解:就是所有 x 左边的值都会落在对应 y 值的概率里。

第一种方法

使用 seaborn 的 ecdfplot 方法, 代码如下:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
# 使用sns.distplot()来计算并绘制CDF
sns.ecdfplot(data=df, legend=True)
plt.grid()
# 显示图形
plt.show()  

得到的 CDF 图形:

CDF by sns

第二种方法

使用 scipy 的 mquantiles 计算

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats.mstats import mquantiles
from matplotlib.ticker import PercentFormatterdef cdf_by_data(df, mark, title):fig, ax = plt.subplots()y = np.arange(0, 1, 0.01)x = mquantiles(df, y)ax.plot(x, y)ax.set_title(title + " - CDF")ax.axvline(x=mark, color='r', linestyle='--', label=str(mark))ax.yaxis.set_major_formatter(PercentFormatter(1))ax.set_xlabel(title)ax.set_ylabel('probability')index = np.abs(x - mark).argmin()plt.plot(mark, y[index], 'o', color='g')ax.text(mark + 1, y[index], "({}, {}%)".format(mark, round(y[index] * 100)), color='r')plt.grid(True)# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
cdf_by_data(df=df, mark=0, title='cdf of data')
plt.grid()
# 显示图形
plt.show()  

得到的图形如下:
CDF by scipy

这篇关于Python 中实现 CDF 累积分布图的两种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784900

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方