Python 中实现 CDF 累积分布图的两种方法

2024-03-07 21:36

本文主要是介绍Python 中实现 CDF 累积分布图的两种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是累积分布

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(Cumulative Distribution Function)标记。
《百度百科》

累积分布函数,又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。一般以大写“CDF”(CumulativeDistributionFunction)标记。累积分布图(distribution diagram)是在一组依大小顺序排列的测量值中,当按一定的组即分组时出现测量值小于某个数值的频数或额率对组限的分布图。

简单理解:就是所有 x 左边的值都会落在对应 y 值的概率里。

第一种方法

使用 seaborn 的 ecdfplot 方法, 代码如下:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
# 使用sns.distplot()来计算并绘制CDF
sns.ecdfplot(data=df, legend=True)
plt.grid()
# 显示图形
plt.show()  

得到的 CDF 图形:

CDF by sns

第二种方法

使用 scipy 的 mquantiles 计算

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats.mstats import mquantiles
from matplotlib.ticker import PercentFormatterdef cdf_by_data(df, mark, title):fig, ax = plt.subplots()y = np.arange(0, 1, 0.01)x = mquantiles(df, y)ax.plot(x, y)ax.set_title(title + " - CDF")ax.axvline(x=mark, color='r', linestyle='--', label=str(mark))ax.yaxis.set_major_formatter(PercentFormatter(1))ax.set_xlabel(title)ax.set_ylabel('probability')index = np.abs(x - mark).argmin()plt.plot(mark, y[index], 'o', color='g')ax.text(mark + 1, y[index], "({}, {}%)".format(mark, round(y[index] * 100)), color='r')plt.grid(True)# 假设你有一些数据
data1 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
data2 = np.random.normal(size=1000)  # 生成1000个正态分布的随机数
df = pd.DataFrame({'data1': data1, 'data2': data2})
cdf_by_data(df=df, mark=0, title='cdf of data')
plt.grid()
# 显示图形
plt.show()  

得到的图形如下:
CDF by scipy

这篇关于Python 中实现 CDF 累积分布图的两种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784900

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命